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ABSTRACT

A hierarchical flux-based finite element method is developed for both

one- and two-dimensional thermal-structural analyses. Derivation of the finite

element equations is presented. The resulting finite element matrices

associated with the flux-based formulation are evaluated in closed-form. The

hierarchical finite elements include additional degrees of freedom in the

approximation of the element variable distributions by the use of nodeless

variables. The nodeless variables offer increased solution accuracy without

the need for defining actual nodes and rediscretizing the finite element model.

Thermal and structural responses obtained using the hierarchical flux-based

method are compared with results obtained from a conventional linear finite

element method and exact solutions. Results show that the hierarchical flux-

based method can provide improved thermal and structural solution accuracy

with fewer elements when compared to results for the conventional linear

element method.
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Chapter 1

INTRODUCTION

1.1 Overview

The finite element method provides a valuable technique for structural

analysis and design. The method is well suited for the analysis of structures

with various geometries, Ioadings, and boundary conditions. Although other

computational techniques are available, the finite element method is usually

best suited for problems having complex geometries. A thorough evaluation of

the structural response induced by aerodynamic loading is an important factor

in the design of aircraft structures. Thermal and structural finite element

analyses are often required in the design of high-speed aerospace vehicles to

prevent structural failure and enhance structural performance.

For high-speed aircraft, severe aerodynamic heating may occur in local

areas on the body of the vehicle. Nonuniform heating may produce intense

local thermal gradients. Since thermal stresses are sensitive to thermal

gradients, a detailed thermal analysis is required to predict accurate

temperature distributions needed for evaluation of the thermal stresses. The

finite element model generally needs to be discretized several times to assure

convergence and accuracy of the thermal and structural solutions. The process

of discretizing the finite element model can be time consuming for complicated



structures and can result in an increasing number of degrees of freedom which

increases the computational expense. An additional time consuming process

can be incurred in the transfer of data from the thermal analysis to a form

suitable for input into the structural analysis. Since the finite element method is

a widely accepted analysis technique, difficulties and inadequacies in applying

the method have inspired research for improving the accuracy and efficiency of

the method.

1.2 Literature Review

The finite element method was first introduced in 1956 as a means for

analyzing complex aircraft structures [1]. Since its inception, the finite element

method has become one of the most prominent numerical methods for structural

analysis. More recently, the finite element method has gained wider

acceptance for the analysis of thermal and fluid problems. The conventional

formulation of the finite element equations in all three disciplines and the most

commonly used element interpolation functions for defining the element

distribution of the unknown dependant variables can be found in reference 2.

In general, the accuracy of the finite element solution is improved by

refining the finite element model using consecutively smaller elements until

there is convergence of the solution. The method for improving solution

accuracy by decreasing the element size is known as the h-method. A

commonly used alternative approach, the p-method, redefines the element

interpolation functions using more nodes with higher-order interpolation

functions until the solution converges. An integrated thermal-structural finite

element approach was introduced by Dechaumphai and Thornton [3-5] which

improves the solution accuracy and computational efficiency for predicting
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thermal stresses. The integrated thermal-structural finite element method uses

a nodeless variable formulation, where additional unknown variables are

included in the assumed element distribution. These nodeless variables are

associated with quadratic interpolation functions which produce more accurate

solutions than the conventional linear element formulation. The nodeless

variable formulation provides more accurate transient temperature distributions

by increasing the degrees of freedom of the element without defining additional

element nodes, and consequently may yield more accurate thermal stress

predictions without the need for rediscretizing the finite element model. The use

of nodeless variables can also be referred to as a hierarchical methodology,

since the formulation reduces to the conventional linear element formulation

when the nodeless variables are constrained to zero or eliminated.

Other approaches for improving the finite element method include the

development of efficient algorithms for generating the finite element equations.

A Taylor-Galerkin algorithm, first developed by Donea [6-7] for convective

transport problems, was applied for the analysis of high-speed flows [8-11]. The

desire for a single methodology to analyze combined.fluid, thermal, and

structural interactions led to the extension of the Taylor-Galerkin algorithm for

the thermal and structural finite element formulations [12-13]. An integrated

fluid-thermal-structural analysis method [14] was developed for the two-

dimensional analysis of high-speed flow over leading edges of aerospace

vehicles. A key feature of the Taylor-Galerkin algorithm is the use of the flux-

based formulation, where the distribution of the flux of the dependent variable is

assumed in the same form as the distribution of the dependant variable. The

flux-based formulation leads to finite element matrices that can be evaluated in

closed form, whereas the conventional finite element formulation requires

numerical integration. Another benefit of the algorithm is that nonlinear material
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properties can be included directly and do not require regeneration of the finite

element matrices. Also, nonlinear boundary conditions can be incorporated

easily into the analysis algorithm. These benefits of the flux-based

methodology led to the further extension of the algorithm for the three-

dimensional thermal-structural analysis of high-speed wing leading edge

designs [15-16]. Additionally, a standard two-dimensional eight-node higher-

order element was incorporated with the flux-based finite element method for

transient thermal analyses [17]. The use of such a higher-order element

requires defining additional nodes within the element and consequently

redefining the finite element model.

1.3 ObjecUve

The objective of this thesis is to develop an improved finite element

method for predicting accurate thermal and structural responses of structures.

As an alternative to using higher-order elements, which requires redefining the

finite element model with additional nodes, this thesis develops and

investigates the use of nodeless variable finite elements with the flux-based

finite element formulation. The hierarchical flux-based finite elements have the

potential of offering a more efficient means of obtaining an accurate thermal-

structural solution. Both the one- and two-dimensional hierarchical flux-based

elements are developed for thermal and structural analyses. Transient thermal

and quasi-static structural analysis capabilities have been developed and are

contained in a common computer program. The thermal finite element model

and its temperature solution are completely compatible with the structural finite

element model. No transfer or manipulation of data is required to obtain the

thermal loading used in the structural analysis. The finite element results are
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compared with results obtained using EAL (Engineering Analysis Language

[18]), a general purpose finite element code frequently used for the thermal and

structural analyses of aircraft structures.

Details of the flux-based finite element method for thermal and structural

analyses are presented in Chapter 2. The basic concepts are introduced along

with the benefits of the algorithm as compared to the conventional finite element

formulation. The concept of nodeless variable finite elements, which were

developed in reference 3 using the conventional finite element formulation, is

introduced in Chapter 3. Later in this chapter, a one-dimensional hierarchical

thermal-structural flux-based finite element analysis method is developed and

results of the method are presented. The methodology is extended to two-

dimensional elements in Chapter 4 with the development of a membrane

thermal-structural analysis capability. A summary of the results and concluding

remarks concerning the effect on accuracy in using the hierarchical flux-based

finite element method for thermal and structural analyses is presented in

Chapter 5.
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Chapter 2

FLUX-BASED FINITE ELEMENT FORMULATION

2.1 Basic Concepts

A common approach to the formulation of many thermal-structural

problems is to assume that the thermal and structural analyses are uncoupled,

and that the structural analysis is quasi-static. The thermal and structural

analyses are uncoupled by neglecting the mechanical deformation rate that

could alter the temperature in the heat transfer equation. In addition, by

neglecting the inertia term in the structural equation of motion, the structural

analysis is deemed quasi-static. These assumptions are credible when the

temperature change is slow and the coupling effect is negligible. The

assumptions allow the transient thermal analysis to be performed first, and the

series of resulting temperatures are then used in performing the structural

analysis. This approach was applied in the development of the Taylor-Galerkin

algorithm with a flux-based formulation for thermal-structural analyses [12].

The flux-based formulation allows the finite element matrices to be evaluated in

closed form, and distinguishes the method from the conventional formulation,

where numerical integration is required. In addition, the flux-based formulation

has desirable attributes that make it effective for analyzing large transient

thermal-structural problems, where the thermal analysis can be nonlinear. First,

the time required to form the finite element matrices using the closed form

expressions is considerably less than the conventional method, which requires

numerical integration [15]. Additionally, nonlinear effects, such as temperature
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dependent material properties, are easily included in the analysis, and do not

require regeneration of the finite element matrices as in the conventional

formulation. Because these advantages improve computational efficiency over

conventional methods, the flux-based algorithm is considered to be more

suitable for solving complex problems. The development of the finite element

formulation for transient thermal and quasi-static structural analysis using the

flux-based formulation is presented in this chapter as a prelude to the extension

of the flux-based formulation to nodeless variable elements in the following

chapters. A comparison to the conventional method is made for the two-

dimensional thermal analysis formulations to present the effect of the flux-based

formulation on the finite element equations.

2.2 Governing Equations

2.2.1 Thermal Analysis

For an uncoupled thermal-structural analysis, the energy equation

describing the transient thermal response of the structure in two dimensions can

be written in the form,

aU T o_ET o_FT
+ -_- + -_-- = HT (2.1)

where UT is related to the internal energy, the subscript T denotes the thermal

analysis, ET and FT are the heat transfer components in the x- and y-coordinate

directions, respectively, and HT is the internal heat generation. The variable UT

and the heat transfer components can be expressed in terms of the temperature

as,

7



_T
ET = qx = -k _-_ (2.2)

=k _T
FT=qy -_-_

where p is the density, c is the specific heat, k is the thermal conductivity, and T

is the temperature. As shown in equation (2.2), the components of heat flux in

the two coordinate directions (qx and qy) are assumed to be related to

temperature gradients by Fourier's law. Both the specific heat and the thermal

conductivity may be temperature dependent.

2.2.2 Structural Analysis

The quasi-static structural response is governed by the equilibrium

equations that can be written in the form,

8x + = 0 (2.3)

where the subscript S denotes the structural analysis. For two-dimensional

problems the vectors {Es} and {Fs} contain the stress components given by

{Es} T=[ Ox l:xy ]

{Fs} T=[ _xy ay ] (2.4)

8



where the stress components Ox, Oy, and _xy are assumed to be related to

displacement gradients and the temperature by generalized Hooke's law,

{o}= [c] {c}+ {p}(T-To) (2.5)

where {o} is the vector of stress components, {¢} is the vector of strain

components, [C] is the matrix of material elastic constants, {13} is the vector of

thermal expansion parameters, T is the temperature, and To is the reference

temperature for a zero stress state.

2.3 Solution Procedure

For simplicity and to illustrate the generality of the flux-based algorithm, the

thermal or structural governing equation is written in the form of a single

equation as

_U o_E _F
-_- + _-_ + _-= 0 (2.6)

where the first term is zero for the quasi-static structural formulation.

The basic objectives of the Taylor-Galerkin algorithm are to: (1) use a

Taylor series expansion of the U variable to establish recursion relations, and

(2) use the Galerkin method of weighted residuals [2] for spatial discretization to

derive the finite element equations. A more detailed description of the Taylor-

Galerkin algorithm is presented in the following chapters for the development of

the nodeless variable flux-based finite element equations.

9



For the thermal analysis formulation, the temperature, T, is the dependent

variable and is contained in U, where

au AU AT
at = At =pc--_ (2.7)

The term AT is the change in temperature from the previous time step, n, to the

current time step, n+l, where AT = (T n+l - Tn). The next step in the formulation

of the finite element equations is to assume a spatial variation of the dependent

variable throughout the selected element type. A natural coordinate system,

which simplifies the element geometry, is used to define the spatial variations in

non-dimensional form. The distribution of temperature, T, for the four-node

bilinear quadrilateral element, is assumed in the form

4

T(x,y,t) = _L. Ni(_,TI) Ti(t) = {N(_,T1))T {T(t)}
i=1

(2.8)

where {N(_,11)}T is the row matrix of the nodal interpolation functions in natural

coordinates, _ and 11, and {T} is the vector of nodal temperatures. A

conventional four-node quadrilateral element shape is shown in figure l(a) and

the transformation to the natural coordinates is shown in figure l(b). Since finite

element matrices are in the form of integrals over element areas, transformation

to natural coordinates permits the integrals to be evaluated over a square

region. The Cartesian coordinates are related to the natural coordinates by

x = [N(_,_I)] {x}

y = [N(r_,TI)] {y) (2.9)

10
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Figure 1. Four-node quadrilateral finite element in
Cartesian and natural coordinates.
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where {x} and {y} are the vectors of nodal Cartesian coordinates for the element.

Since the same interpolation functions, Ni, are used to interpolate the

temperature and the spatial coordinates, the element is called an isoparametdc

element. For the four-node quadrilateral element, the interpolation functions

are defined by

1
N1 = _ (1-_) (1-TI)

1
N2 = _ (1+_) (1-T1)

1
N3= _" (1+4) (1+11)

1
N4 = _ (1-_) (1+T1)

(2.10)

The variable, U, which is directly related to T, is also assumed in the same

form as equation (2.8). As a consequence of the Taylor-Galerkin algorithm, U

becomes the unknown variable. The thermal finite element equations are

solved for U at each time step. The temperatures are then determined from

equation (2.7).

A feature of the flux-based algorithm, which differs from the conventional

finite element method, is that the flux-based algorithm expresses the variation of

the element fluxes E and F in the same form as the element dependent variable

[6-7], that is

U(x,y,t) = [N(_,q)]{U(t)}

E(x,y,t) = [N(_,q)]{E(t)}

F(x,y,t) = [N(_,q)]{F(t)}

(2.11)
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where {U} is the vector of unknown nodal quantities of the variable U. In the

thermal context, {E} and {F} are the vectors of the element nodal heat fluxes and

are related to the nodal temperatures by equation (2.2) and equation (2.7). In

the structural context, {E} and {F} are vectors of the element nodal stresses,

which are related to the unknown nodal displacements by use of equation (2.5)

and the strain-displacement relations.

Application of the Taylor-Galerkin algorithm to the energy equation,

equation (2.1), and the flux-based assumption [12] results in the transient

thermal finite element equation

[M]{Au}n n n= {ax}l +{ay}l + {R}_ (2.12)

where [M] denotes the mass matrix

[M] =/_(N}{N}TdA (2.13)

which may be diagonalized to produce a lumped mass matrix. The vector {AU} n

is the change in the nodal values of the variable U between the time steps tn+l

and tn where tn = nat. The vectors {Rx}l and {Ry}_ are associated with the fluxes

within the element in the x- and y-coordinate directions and {R}_ is the boundary

term associated with the flux across the element boundary. These vectors are

defined by

{Rx}l = At [Dx] {E} n (2.14a)

13



where

[Dx]= ?_-_xN {N}TdA
A

(2.14b)

{Ry}7 = At [Dy] {F}n (2.15a)

where

[Dy]= .J_o_-]: {N}TdA (2.15b)
A

{R}_= -At [B] {q} (2.16a)

where

[B]= j'{N}{N}TdS
S

(2.16b)

The vector {q} contains the components of the nodal heat flux normal to the

element surface boundary. The thermal boundary conditions are applied with

the vector {q} expressed in equation (2.16a), where the surface nodal heat flux

q is replaced by the quantities representing any one of several different types of

boundary conditions

q=,_

_" 0

qs

h(T-Tr)

eo(T4-T 4

(insulated)

(specified heating)

(surface convection)

(surface radiation)

(2.17)
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For the structural analysis, the Taylor-Galerkin flux-based formulation

produces matrices identical to equations (2.14-2.16), where {E} and {F}

represent the nodal stress components given in equation (2.4). More details of

the formulation and boundary conditions for the structural analysis are given in

reference 15.

2.4 Closed-Form Finite Element Matrices

All the element integrals obtained from the flux-based formulation can be

evaluated in closed form. The closed-form matrices apply to the quadrilateral

as well as the hexahedral element shapes. The availability of closed-form

expressions eliminates the need for numerical integration in the evaluation of

element matrices. The closed-form expressions for the flux-based finite element

matrices, [M], [Dx], [Dy], and [B] defined in equations (2.13-2.16), are merely a

function of the element geometry. The use of the symbolic manipulation

program, MACSYMA [19], simplified the evaluation of the closed-form

expressions. The closed-form expressions for the coefficients in the finite

element matrix [Dx], for the four-node quadrilateral element are

Dx (1,1)=-

Dx (2,2) =-

Dx (1,3) =-

Dx (2,4) =-

Dx (1,2) =-

Dx (1,4) =-

Dx (2,1) =

Dx (2,3) =-

Dx (3,3) =- (Y4- Y2) / 6

Dx (4,4) =- (Yl- Y3) / 6

Dx (3,1)=-(Y4- Y2) / 12

Dx (4,2) =- (Yl- Y3) / 12

(Y4 + Y3 - 2y2) / 12

(2y4 + Y3 - Y2) / 12

(Y4 + Y3- 2yl) / 12

(Y4- 2y3 + Yl) / 12

15
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Dx (3,2) = (Y4- 2y3- Yl) / 12

Dx (3,4) = (2y4- Y2- Yl) / 12

Dx (4,1) =- (y3+ Y2- 2yl)/12

Dx (4,3) =- (2y3- Y2- Yl) / 12

where xi and Yi are the nodal coordinates. Expressions for [Dy], [M] and [B] are

similar and are given in reference 15. The flux-based finite element matrices

are also independent of material properties. This feature removes the necessity

of reforming the element matrices at every time step when material properties

are temperature dependent.

The formulation of the finite element equations using the conventional

finite element method also begins with the governing equations for heat transfer

and structural equilibrium expressed in equations (2.1- 2.4). For the thermal

quadrilateral element formulation, the temperature is also assumed to be in the

same form as equation (2.8) using the element interpolation functions defined in

equation (2.10) and the natural coordinate transformation expressed in

equation (2.9). The thermal finite element equations are in the form

[Cp] {____T}.[Kx]{T} + [Ky] {T} = {H} (2.19)

where {1} is the vector of unknown nodal temperatures, [Cp] is referred to as the

capacitance matrix, {H} is the internal heat generation vector, and [Kx] and [Ky]

are the conductance matrices associated with heat conduction in the x- and y-

coordinate directions, respectively. The matrices are defined by

[Cp] = Aj"pc {N} {N}T dA (2.20)

16



•_)-[-_}-_ dA
[Kx] = ASk _)x

(2.21)

• °_-{-_y _{N}T_ydA (2.22)[Ky] = _ k

where p is the density, c is the specific heat and k is the thermal conductivity. It

can be observed from equations (2.20-2.22) that the conventional finite element

matrices are dependent on the material properties which, in general, are a

function of the temperature• In addition, there is no closed-form expression for

[Kx] and [Ky] for arbitrary quadrilateral element shapes. Numerical integration is

thus required to compute these element matrices. The Gauss integration

method is used where the integral is expressed as a sum of the weighted terms

evaluated at Gauss points. Gauss weighting factors and integration points can

be found in reference 2. In performing numerical integration, the accuracy of

the matrices depends on the number of Gauss points used. Two Gauss points

in each coordinate direction are normally used for the bilinear quadrilateral

element. Due to their dependency on material properties and the need for

numerical integration, the process of generating the conventional finite element

matrices can be computationally expensive.

To predict temperatures and temperature gradients accurately in a

structure subjected to aerodynamic heating, refined finite element mesh sizes

may be needed at some locations. Finer meshes, and hence smaller elements,

require small time steps for analysis solution stability, such as for explicit

solution algorithms. Hence, the finite element equation needs to be solved

many times when performing a transient thermal analysis. Temperature

dependent material properties are also often necessary to model thermal effects

accurately in a transient thermal analysis. These requirements may make the

17



conventional finite element method computationally expensive for modelling

large-scale aircraft structures. The flux-based finite element method offers the

advantages of closed-form finite element matrices and ease in representing

temperature dependent material properties while providing equivalent solution

accuracy. Hence, the flux-based finite element method may be more suitable

for analyzing large nonlinear, transient thermal-structural problems. The

benefits of the flux-based finite element method inspired the extension to

nodeless variable elements developed herein.

18



ONE-DIMENSIONAL

USING

Chapter 3

NODELESS VARIABLE FINITE

FLUX-BASED FORMULATION

ELEMENTS

3.1 Element Interpolation Functions

The fundamental basis of the finite element method is that a continuum of

arbitrary shape can be modeled by an assemblage of simple shapes. For one-

dimensional problems, the elements are line segments. The line segments are

assembled to model a one-dimensional domain, which may be either a one-

dimensional slab or rod continuum. The variation of a dependent variable

within the element is then approximated as a function of the nodal variables and

interpolation functions. The conventional finite element method normally

utilizes linear elements where a linear distribution of a dependent variable

within an element is assumed using linear interpolation functions.

For hierarchical finite elements, additional unknown variables,

sometimes called nodeless variables, are introduced in the assumed

distribution of a dependent variable for an element to provide a nonlinear

distribution of the dependent variable. For thermal problems, temperature is the

dependent variable. A two-node one-dimensional element and typical element

temperature distributions for the conventional and hierarchical finite elements

are shown in figure 2. The hierarchical finite element with one nodeless

variable assumes the element temperature distribution in the form

_:
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(a) Two-node one-dimensional element

T(x)_

1-1

0 L
X

(b) Assumed temperature variation in a
conventional linear element

T(x) ""

1-1
0 L

(c) Assumed temperature variation in a
hierarchical nodeless variable element

Figure 2. One-dimensional thermal finite element and typical
element temperature distributions.
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3
T(x) = _, Ni(x)Ti = {N(x)} T {T}

i=1
(3.1)

where {T} is the vector of unknown variables and {N(x)} T is the row vector of

element interpolation functions. The nodal temperatures are T1 and T2, and T3

is the nodeless variable. Similarly, in the structural analysis, the element

displacement, u, is the unknown variable and is expressed in the form

3

u(x) = _L. Ni(x)ui = {N(x)} T {u}
i=1

(3.2)

where {u} is the vector of unknown variables and {N(x)} T is the same row vector

used to approximate the element temperature distribution. Once again, ul and

u2 are nodal displacements, and u3 is the nodeless variable. The element

interpolation functions for an element of length L are defined by

X

N1 = 1 -L

x

N2= _ (3.3)

X X

N3=E(1- E)

where N1 and N2 are the nodal interpolation functions and N 3 is the nodeless

variable interpolation function. Note that the nodeless variable does not

represent the actual nodal temperature or displacement, but rather is directly

related to the magnitude of the nonlinear variation of the element temperature
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and displacement distributions. When the nodeless variable is constrained to

be zero, the approximations of the element temperature and displacement

distributions reduce to the conventional linear element approximation. For the

hierarchical finite element formulation with one nodeless variable, a quadratic

distribution of the unknown variables is assumed which is capable of

representing the general solution more realistically.

3.2 Derivation of Flux-based Finite Element Equations

3.2.1 Thermal Analysis

The transient thermal response of a structure is governed by the energy

equation. For a one-dimensional, uncoupled, thermal-structural analysis with

no internal heat generation, the energy equation can be written in the form

_U aE
at + _ = 0 (3.4)

The variable U, and the heat flux, E, are defined by

aT
E = qx = -k _- (3.5)

where T is the temperature, p is the material density, c is the specific heat, and k

is the thermal conductivity. Both specific heat and thermal conductivity may be

temperature dependent.
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The Taylor-Galerkin algorithm is applied to the governing equation,

equation (3.4). A Taylor series expansion of the variable U(x,t) in time is

needed to establish recursion relations. The Taylor series expansion of U(x,t) in

time is in the form of an infinite series

(tn+1 . tn)2
1 a2U

U(x'tn+l) = U(x'tn) + (tn+l - tn) + 2! _2

1 03U (tn+1 _ tn)3
+3t _3 + ""

(3.6)

The change in the variable U with respect to time is defined as

AU = U n+l - U n (3.7)

For the first order accurate approximation in time, the change in the variable U

is approximated as

aU n
AU = -_- At (3.8)

Substituting for the first derivative of the variable U from equation (3.4), equation

(3.8) becomes

AU + At _-_Exn= 0 (3.9)

The Galerkin method of weighted residuals is now applied to minimize the error

of the approximation of the dependent variable over the element length,
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L.J"Ni R dx = 0 (3.10)

where Ni, the interpolation functions, are used as the weighting functions and R

is the residual. For the nodeless variable formulation, i = 1 to 3, establishing

three equations for minimizing the error of the three unknown variables. By

substituting equation (3.9) for the residual, where R equals the left hand side of

equation (3.9), equation (3.10) becomes

LJ" Lf °_EnNiAUdx + At Ni -_'-dx=0 (3.11)

Integration by parts on the second term in equation (3.11) yields

j L"}. °_NiNi AU dx = At -_- En dx- At (Ni(0) En(0) - Ni(L) En(L) ) (3.12)

The finite element approximations are now needed for discretization in space.

Since the variable U is directly related to temperature, it follows from equation

(3.1) that

where

3

L_U(x)= _ Ni(x)AUi = (N(x))T (_U}
i=I

AUi = p c ATi = p c (T n+1..l_ni)

(3.13)

(3.14)

The flux-based assumption discretizes the heat flux in the same form as the

variable U, where heat flux En replaces AU in equation (3.13). The nodal
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values of heat flux, E1 and E2, are related to the temperature gradients through

Fourier's law. Since heat flux is related to the gradient of the temperature, and

the temperature distribution is assumed to be quadratic, the assumed heat flux

must be a linear distribution, requiring that the nodeless variable heat flux, E3,

must be zero. Thus the heat flux distribution reduces to a linear distribution in

the form

2

En(x) = _L_Ni(x) En = { N(x) }T{E}r_
i=1

(3.15)

where {E} n is the nodal heat flux vector and { N(x) }T is the row matrix of the

linear interpolation functions N1 and N2. The vector {AU} and heat flux nodal

vectors are independent of the integration over the element length. The finite

element approximations, equations (3.13 and 3.15), are substituted into

equation (3.12) to yield the finite element equation in the form

[M]{AU} = At [D] {E} n- At {BT} (3.16)

where [M] denotes the matrix

[M] = LJ'{N}{N}Tdx
(3.17)

The first term of the right hand side of equation (3.16) is associated with the heat

flux within the element, and {BT} is the boundary term associated with the heat

flux across the element boundaries. The matrix [D] and vector {BT} are defined

by
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[D] = ._o_N-jx{ N(x)}T dx (3.18)

r-q(x = 0)}{ST} = lq(x O L)
(3.19)

where q in equation (3.19) represents the thermal boundary conditions and is

replaced by any one of the several different types of boundary conditions given

in equation (2.17). The closed-form expressions for the terms in matrix [M] and

[D] are given in Appendix .4,.

The nodal heat flux vector in equation (3.16) is related to the nodal

temperatures through Fourier's law and the finite element approximation for

temperature. The terms in the vector are evaluated at the corresponding nodes

where x = 0 at node 1 and x = L at node 2. The vector is defined by

L-k _x

{E}n= ./_kCl{Nx_}T.(T} n) node

(3.20)

where Inode i symbolizes the evaluation of the quantity at node i. Since {E} n is

dependent on nodal temperatures and the nodal values for thermal

conductivity, k, it needs to be updated at every time step for transient thermal

analyses. The matrix [D] is independent of thermal properties and needs only to

be evaluated once, prior to the transient analysis. The finite element equation,
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equation (3.16), is solved for AU at every time step. The nodal temperatures are

determined from equation (3.14).

3.2.2 Structural Analysis

The one-dimensional quasi-static structural response is governed by the

equilibrium equation written in the form

_E
8-x = 0 (3.21)

where E represents the element stress in the x-direction. The element stress is

defined by

E = _1 - _2 (3.22)

where Cl and c2 are the one-dimensional components of the stress vector

associated with the displacement gradients and the temperature, respectively.

The element stress, E, is related to displacement gradients and temperatures by

Hooke's law for thermal stress problems. For one-dimensional problems, the

stress components reduce to

o_U

_1 = E _x (3.23)

_2 = E o_( T(x)- To) (3.24)

where E is the modulus of elasticity, u is the displacement in the x-direction, ¢z is

the coefficient of thermal expansion, T(x) is the temperature distribution, and To

is the reference temperature for a zero stress state.
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As with the thermal formulation, the Galerkin method of weighted

residuals, equation (3.10) is applied to minimize the error of the approximation

of the dependent variable over the element length. Here, the governing

equation, equation (3.21), represents the residual, where R equals the left hand

side of equation (3.21). Integration by parts is performed to produce an element

integral term and a boundary integral term for application of applied stress

boundary conditions. The resulting equation is in the form

aNi aNi
j' _ oi dx- I _-- o2 dx- (Ni(O) o(0)- Ni(L) o(L) ) - 0
£ £

(3.25)

where i = 1 to 3 yields three equations for minimizing the error of the

hierarchical finite element approximations. The finite element approximations

are needed to discretize equation (3.25) in space. The finite element

approximation of the displacement dependent variable is given in equation

(3.2). For the structural formulation, the flux-based assumptions are applied to

the stress components which are analogous to heat flux in the thermal

formulation. The flux-based assumptions discretize the stress components in

the same form as the dependent variable. The o'1 component is a function of the

displacement gradient, where the displacement distribution is assumed to be

quadratic. The G1 stress component reduces to a linear approximation in the

same manner that the flux approximation, which is a fuction of the temperature

gradient, reduces to a linear approximation. Since the o2 stress component is

directly dependent on temperatures and the temperature distribution

approximation is quadratic, the approximation for 0"2 is also quadratic. The

resulting stress component approximations are thus given by

28



2

01(x) = _, Ni(x)icli = { N(x) }T (al)
i=1

(3.26)

3

o2(x) = _ Ni(x)o2i = {N(x)} T {o'2}
i=1

(3.27)

where { N(x) }T is the row matrix of the linear interpolation function, {_1} is the

vector of nodal values for the stress component associated with the

displacement gradient, {N(x)} T is the row matrix of the interpolation functions

given in equation (3.3), and {c2} is a vector of known values associated with

temperature and will be defined subsequently in the thesis. The flux-based

assumptions, equations (3.26 and 3.27), are substituted into equation (3.25) to

yield the finite element equation.

For a one-dimensional, quasi-static, structural analysis, the finite element

equation is in the form

[D] {cl) = [D2] {_2} + {B} (3.28)

where the matrix [D] is identical to the matrix [D] produced in the thermal

formulation, and is defined by equation (3.18). The matrix [D2] associated with

the c2 stress component and the vector {B} associated with the boundary

conditions are defined by

[D2]= ._xN{_ {N} r dx (3.29)
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(3.30)

where (_ in equation (3.30) represents an applied stress boundary condition.

The expressions for the terms in the finite element matrix [D2] are given in

Appendix A.

The terms in the vector {ol} are related to nodal displacements through

equation (3.23) and the finite element approximation for displacements,

equation (3.2). The vector {al} is defined by

(3.31)

where the gradients of the interpolation functions given in equation (3.3),

evaluated at the nodes, are substituted into equation (3.31). The displacements

in equation (3.31) are extracted to yield the {al} stress component in the form

{Ol) = [P]{u) (3.32)

The {(_1} nodal stress component vector is given here in terms of the unknown

displacement vector, {u}, and a matrix, [P], which is a function of the element

length and the modulus of elasticity. The coefficients in the matrix [P] are given

in Appendix A. The expression for the stress vector {al}, is substituted into the

finite element equation, equation (3.28), which can now be written in terms of

the unknown displacement vector.
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The vector {02} is derived by equating the flux-based assumption for a2,

given in equation (3.27), with the definition of 02 given in equation (3.24), where

T(x) is replaced by the finite element approximation for T(x), equation (3.1).

The expression is written in the form

_ Ni(x)o21 = E (x ( _ Ni(x)Ti - To )

i=1 i=1
(3.33)

Evaluating equation (3.33) at the element nodes where i = 1 and i = 2, and x =

0 and x = L, respectively, gives the values of the vector {a2} as

'E(x (T1 - To) 1

{O2) =IE Or.(T2- To) j'

L Ea T3 J

(3.34)

The stress component vector, {a2}, is a vector of known quantities because the

element nodal temperatures T1 and T2, and the element thermal nodeless

variable T3 are obtained from the thermal analysis.

3.3 Thermal-Structural Analysis Algorithm

The hierarchical flux-based finite element analysis method is

implemented in a computer program for performing transient thermal and quasi-

static structural analyses. A flow chart for the one-dimensional thermal-

structural finite element analysis method is shown in figure 3. Once the finite

element model is input, the finite element matrices [D] and [D2] are assembled
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i Input Finite Element Model I

Assemble Matrices
- element [D] and [D 2]

system [M]

Thermal Analysis
1. compute element vectors {E n} and {BT}

2. compute element {RHS} = 6t([D]{E} n- {BT})

3. assemble system {RHS}

4. solve for AU ([M] {AU} - {RHS})

5. calculate {T} n+l = {AU/pc n} + {T} n

6. update Tn=T n+l, tn=tn+&t

tn=ts r

Structural Analysis
1. compute element [LHS] = [D][P]

2. compute element vectors {a2} and {B}

3. compute element {RHS} = [D 2]{o2} + {B}

4. assemble system [LHS] and {RHS}

5. solve for {u} ( [LHS]{u} = {RHS})

_'STO P_

Figure 3. Flow chart for one-dimensional hierarhical flux-based
thermal-structural analysis.

_h
r
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along with the system [M] matrix. The thermal analysis is performed first and

consists of: (1) computing the element vectors {E n} and {BT}; (2) computing the

element right hand side vectors, where {RHS] is the right hand side of equation

(3.16); (3) assembling the system {RHS}; (4) solving the system equations for

{AU}; (5) computing the {T}n+l vector from equation (3.14); and (6) updating the

temperatures and time step for proceeding in a transient thermal analysis. If the

time tn = ts, where ts in the time set for a quasi-static structural analysis, the

structural analysis begins and the vector {'l'}n is used for thermal loading. The

structural analysis consists of: (1) computing the element [LHS] matrix, where

[LHS] represents the left hand side matrix of the finite element equation ([LHS] =

[D][P]); (2) computing the element vectors {c2} and {B}; (3) computing the

element {RHS}, where {RHS} represents the right hand side of equation (3.28);

(4) assembling the system [LHS] and {RHS}; and (5) solving for the vector {u}. If

ts = tend, where tend is the time set to end the thermal-structural analysis, the

analysis is complete.

3.4 Applications of One-Dimensional Methodologies

To evaluate the hierarchical flux-based finite element method, four one-

dimensional thermal and structural problems are presented. The first two

example problems are for the transient thermal analysis of a copper slab with

constant material properties and with temperature dependent material

properties. The f01!owing two example problems are for the thermal and

structural analysis of a copper rod with one end constrained and with both ends

constrained. Results obtained by the hierarchical flux-based method are
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compared with solutions obtained using the conventional method and available

exact solutions.

3.4.1 Transient Thermal Analysis of a Coooer Slab

A copper slab 0.02 in. in length subjected to an applied heating rate of

200 Btu/in.2-sec on the face at x = 0 and a prescribed temperature equivalent to

the initial temperature at x --- L is analyzed for two cases: (1) constant material

properties and an initial temperature of Ti = 0 °F; and (2) temperature

dependent thermal conductivity and an initial temperature of Ti = -410 °F. A

schematic diagram of the finite element model and the material properties for

copper are shown in figure 4.

For case one, with constant material properties, the exact solution to the

governing equation for one-dimensional transient heat transfer can be derived

from the method of separation of variables and is in the form of an infinite series

[20]. The exact solution for the transient temperature distribution is given by

T(x,t)= _-_ 8._ '_ (-1) n (2n+l)_(L-x) -k (2n+l)x]2t)
k_ 2 n__._0(2n+l)2 sin 2L exp (_ [ 2L

(3.35)

where the boundary conditions and initial condition are

_T
-k_-x (0,t) = q

T(L,t) =0

T(x,0) =0

(3.36)

34



/
/

Copper //

/
/
/

/ slab /
/ /
/ /

q = 200 Btu/in2-sec = ,_
/

i

_-- L = 0.02 in.--_

F T(L' t) = Ti

(a) Schematic diagram of thermal
finite element model

k9

Btu/sec-in.-°F

0.06

0.05

0.04

0.03

0.02

0.01

m
I

t

t
!

!

I

!

|
|

|

|

Case one: k = constant

..... Case two: k(T)

p = 0.323 Ib/in.3
c = 0,1015 Btu/Ibm-°F

I

I

I

I
|

|
t

%
_llllllllllllllillllllllill

0 I I I I I I
-460 -360 -260 -160 -60 40 140

Temperature, °F

(b) Material properties for copper

Figure 4. Schematic diagram of thermal finite element model
of a copper slab and material properties for copper.
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The temperature distributions within the slab obtained from the exact solution

are shown in figure 5 at two times during the transient thermal response. Also

shown in figure 5 are the finite element solutions obtained from the hierarchical

flux-based and conventional methods. The flux-based method yields an

accurate prediction of the exact solution using two nodeless variable elements,

whereas the conventional method required the use of ten elements to obtain a

temperature distribution prediction within one percent of the exact solution, not

shown. The overall average error between the finite element and exact

temperature distributions is defined by

Ilell
error = _ x 100 % (3.37)

where

and

L

II e II2 = E Texac! -TFE) 2 dx

L

1 I0(Texacl)2 dx112= EII T

where Texac= is the exact temperature distribution and TFE is the finite element

temperature distribution over the length, L, of the finite element model. Using

two elements with the conventional method results in a 29% overall average

error at t = 0.0001 sec. and a 3% overall average error at t=O.001 sec. As

shown in figure 5, the hierarchical finite element method provides a more

accurate prediction of the temperature distribution than the conventional

method for the same number of elements, especially at early times in the

transient solution when there is a large temperature gradient within the slab.
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Figure 5. Case one: Temperature distributions in a copper slab
with constant material properties.
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For case two with temperature-dependent thermal conductivity, an initial

temperature of Ti = -410 OF is used. At this low initial temperature, the thermal

conductivity of copper is highly nonlinear as shown in figure 4. The transient

thermal response of the copper slab, using the temperature dependent

conductivity shown in figure 4, is predicted using both the hierarchical flux-

based and conventional methods. Two temperature distributions are shown in

figure 6 for t = 0.0001 sec. during the transient thermal analysis. Ten

conventional elements are necessary for the temperature distribution to

converge to within one percent of the temperature distribution obtained using

eight conventional elements. The ten-conventional-element temperature

distribution was then used as a reference solution. The hierarchical flux-based

method predicted an accurate temperature distribution, within one percent of

the reference solution, using only four nodeless variable elements. From the

two examples presented above, the hierarchical flux-based method provides

accurate temperature distributions using fewer elements.

3.4.2 Thermal-Structural Analysis of a Coooer Rod

A copper rod one inch in length is analyzed for the transient thermal and

quasi-static structural response at t = 0.5 sec. A schematic diagram of the

thermal and structural finite element models for the two cases analyzed are

shown in figure 7. In both cases, shown in figure 7(a), the thermal analysis

consists of an applied aerodynamic heating rate of q = 10 Btu/in.2-sec at x = 0

and a prescribed temperature equal to the initial temperature of 70 °F at x = L.

The temperature distributions obtained using the exact solution, the hierarchical

flux-base method, and the conventional method are shown in figure 8 for t = 0.5

sec. As can be observed from figure 8, two hierarchical flux-based elements
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Figure 6. Case two: Temperature distributions in a copper slab
with temperature dependent conductivity at t = 0.0001 sec.
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(a) Thermal boundary and initial conditions
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,_ L=I in.

I c(L) = 0

(b) Case one: structural boundary conditions, free end

ulol=o!:
L=I in, -_I

I u(L) = 0

(c) Case two: structural boundary conditions, fixed ends

Figure 7. Schematic diagrams of thermal and structural finite element

models of a copper rod.
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Figure 8. Temperature distributions in a copper rod at t = 0.5 sec.
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are sufficient to predict the temperature distribution accurately, whereas four

conventional elements are required to closely represent the exact solution.

Two quasi-static structural analysis cases are investigated using the

temperature distributions shown in figure 8 at t = 0.5 sec. The structural

boundary conditions for case one, shown in figure 7(b), constrains the end at x

= 0 and allows for free expansion at x = L. The initial temperature of Ti = 70 °F

from the thermal analysis was used as the reference temperature for a zero

stress state, To = 70 OF. The displacement distributions obtained for case one

using the exact solution, the hierarchical flux-based method, and the

conventional method are shown in figure 9. Once again, four conventional

elements are needed to closely approximate the exact solution whereas only

two hierarchical flux-based elements are sufficient to provide accurate results.

The next case investigated, case two, assumes both ends are constrained as

shown in figure 7(c) and a reference temperature of To = 70 OF for a zero stress

state.

The displacement distributions and the average element stresses

obtained for case two are shown in figure 10(a) and figure 10(b), respectively.

As shown in figure 10(a), two hierarchical flux-based elements were needed to

closely represent the exact solution, whereas two conventional elements were

insufficient to predict the displacement distribution accurately. The use of two

conventional elements underpredicts the maximum displacement by 13 %

whereas two nodeless variable elements overpredicts the maximum

displacement by only 3.4 %. Using two conventional elements resulted in a 3%

error in predicting the stress distribution in the copper rod whereas two

hierarchical elements predicted the stress distribution within a 1% error margin.
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Figure 9. Case one: Displacement distributions in a copper rod
subjected to thermal loading and constrained at x = 0 (t = 0.5 sec.).
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The previous examples demonstrate the ability of the hierarchical method to

predict accurate thermal and structural responses using fewer elements than

required by the conventional method to obtain the same accuracy. The

following chapter includes the extension of the hierarchical flux-based method

for two-dimensional thermal-structural analyses.
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TWO-DIMENSIONAL

USING

Chapter 4

NODELESS VARIABLE FINITE

FLUX-BASED FORMULATION

ELEMENTS

4.1 Element Interpolation Functions

In this chapter, the flux-based method is extended to develop a two-

dimensional finite element formulation using nodeless variables. As with the

conventional two-dimensional bilinear element formulation, a general

quadrilateral element shape is employed for formulating the nodeless variable

element interpolation functions. To simplify the element integrations arising in

the finite element matrices, the transformation from Cartesian to natural

coordinates shown in figure 1 is utilized. The relation between the two

coordinate systems given in equation (2.9) is applied in the development of the

two-dimensional finite element equations with nodeless variables.

For the hierarchical method, a nonlinear variation of the dependent

variable is assumed over the element surface. Preserving the four-noded

quadrilateral element, the nonlinear variation is established by introducing

additional degrees of freedom in the approximation of the dependent variable.

For the thermal analysis formulation, the distribution of temperature over the

element surface is assumed in the form

46



8

T= __, Ni(t_,_) Ti(t) = {N(_,,_)}T {T(t)}
i=1

(4.1)

where {N(_,TI)} T is the row matrix of element interpolation functions and {T(t)} is

the vector of unknown variables. The nodal temperatures are T1 through T4,

and the nodeless variables are T5 through "1"8. For the structural analysis

formulation, the displacement distributions are assumed in the same form

8

u = E Ni(_ ,11)ui = {N(_,'q)} T {u} (4.2)
i=1
8

v= _ Ni(_,11)vi = {N(_,11)}T {v) (4.3)
i=1

where u and v are the displacements in the x- and y-coordinate directions,

respectively. The vectors of unknown variables, {u} and {v}, contain the four

nodal displacements and four nodeless variables. The displacement

distributions can be expressed in a combined form as

{;}=[.,,., (..)

where [N] is the combined matrix of interpolation functions for the structural

formulation and {tS} is the vector of nodal displacements and nodeless variables.

These matrices, [N] and {8}, are defined by

N1 0 N2 0 . • • Ns 0 ][N]= 0 N1 0 N2 • • • 0 N8 J (4.5)

47



"Ul

Vl

U2

v21
I

U8
i

_.V8J

(4.6)

The element interpolation functions, Ni, i = 1 to 4 are identical to those used for

the conventional bilinear four-node element given in equation (2.10), and Ni, i=

5 to 8 are the nodeless variable interpolation functions given by

1
N5 = _ (1-r_2) (1-_1)

1
N6 = _ (1+_) (1-xl2)

1
N7=g (1-_ 2) (1*_1)

1
N8 = _ (1-;) (1-T12)

(4.7)

where each interpolation function varies quadratically along one edge and

vanishes along the other edges of the element.

Utilizing the nodeless variable interpolation functions in equations (4.1 -

4.3) provides a quadratic variation of the temperature or displacement

distribution over the element with only four element nodes. A schematic of

typical element temperature distributions for the nodeless variable element and

conventional element are shown in figure 11. The magnitude of the nonlinear

variation on an element edge depends on the magnitude of the nodeless

variables. If the nodeless variables are constrained to zero in the

approximation of the temperature or displacement distribution given in

48



equations (4.1 - 4.3), the distribution reduces to the conventional bilinear

element approximation.

Quadratic, 4-node
element with
nodeless variables

Conventional,
bilinear, 4-node
element

1

T(x, y, t)

2

Figure 11. Typical two-dimensional finite element temperature distributions.

49



4.2 Derivation of Flux-based Finite Element Equation

4.2.1 Thermal Analysis

The transient thermal response

thermal-structural analysis is governed

for a two-dimensional uncoupled

by the energy equation given in

equation (2.1), where the terms in the equation are defined in equation (2.2).

The flux-based Taylor-Galerkin algorithm is applied to the governing equation

to yield the finite element equations. As with the one-dimensional formulation,

the Taylor series approximation for the variable AU, equations (3.6 - 3.8), is

utilized to establish recursion relations. The approximation, equation (3.8) is

substituted in the two-dimensional governing equation, equation (2.1), to yield

o_En o_Fn
_u. At 0 (4.8)

The Galerkin method of weighted residuals is applied to minimize the error of

the finite element approximations over the element area,

A.j"Ni R dA = 0 (4.9)

where Ni, the nodeless variable element interpolation functions, are used as the

weighting functions and R is the residual. For the quadrilateral nodeless

variable element, i = 1 to 8, establishing eight equations for minimizing the error

of the eight unknown variables. The left hand side of equation (4.8) is

substituted for the residual to yield

,j J O_En " J O_FnNi AU dA + At Ni _ + ,_t Ni _ dA = 0 (4.10)
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Integration by parts is performed on the second and third terms in equation

(4.10) to yield

j Ni AU dA = At ,J" _Ni En dA+ &t - At qno_x i _-_ Fn dA JNiUS
(4.11)

where the first two terms on the fight hand side represent the heat conduction

within the element and the last term on the right hand side represents the heat

flux across the element boundaries. The quantity qn is the heat flux normal to

the element boundary.

The next step in the formulation of the thermal finite element equation is

to discretize equation (4.11) in space by implementing the finite element

approximations. The variable, AU, being directly related to temperature, is

discretized in the same form as equation (4.1) and is given by

where

8

AU = E Ni(_,ll) AUi
i=1

= (N(_,11))T (AU) (4.12)

_Ui = p c ATi = p c (1"n+l- l._rli) (4.13)

The flux-based assumptions discretize the heat flux in the x- and y-coordinate

directions in the same form as the dependent variable. As with the one-

dimensional formulation, the variations of heat flux over the element surface

reduce to bilinear approximations in the form

4

En = _E_Ni(r_,q) E n = { N((;J1) }T (E n}
i=1

(4.14)
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4
Fn : _L, Ni(r_,ll)Fn = { N({_JI)}T {Fn}

i=I
(4.15)

where { N(_,'q) }T iS the row matrix of linear interpolation functions given by

equation (2.10), and {E n} and (F n} are the nodal heat flux vectors in the x- and y-

coordinate directions, respectively.

The two-dimensional transient thermal finite element equation can be

written in matrix form as

[M](AU}= At[Dx]{En}+ At[Oy](Fn}-At[B](q} (4.16)

where [M] denotes the matrix associated with {AU}, [Dx] and [D),] are associated

with the heat transfer within the element, and [B] is the boundary matrix. These

matrices are given by

[M] = AJ'{N}(N}TdA (4.17)

[Dx]= ]_Sa-_xN(-N-}TdA
A

(4.18)

__{_N_}.,I"-N-)TdA
[Dy]= ,)ay • -

A
(4.19)

[B] =j{N}{-'N-}TdS
(4.20)
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The transformation from Cartesian to natural coordinates used to evaluate these

matrices requires relating the gradients of the interpolation functions in both

coordinate systems. The chain rule is applied to obtain the relationship

I' tl t'',lf'' t' aN = o_X o_y aN = [J] 8N (4.21)

where [J] is the Jacobian matrix. Relating x and y to the natural coordinates

using equation (2.9), [J] is given by

[J] =

- 4 c3Ni
T. ---xi

i=1 c3;

c3Ni
- i=1 _ xi

i=1 ar_ Yi

c3Ni
Yi

i=1 m

Jll J12 I (4.22)
J21 J22

From equations (4.21 - 4.22), it follows that

c3N = [j]-I aN = i_ll -J21 J11 __
(4.23)

where [j]-i is the inverse and IJI is the determinate of the Jacobian matrix [J].

The derivatives of the interpolation function gradients occurring in equations

(4.18 - 4.19) with respect to the Cartesian coordinates are replaced by the

corresponding gradients in natural coordinates as
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_Ni 1 ('j _Ni , o_Ni_,

o_Ni 1 ,, o_Ni , o_Ni'_
_'- = I-_II'J21_ + ,J11 "_")

(4.24)

(4.25)

Using the relationship dA = IJI dr,, drh the integration of the matrices given in

equations (4.17 4.19) can now be evaluated with respect to natural

coordinates over the square element area shown in figure 1. All matrices

arising in the transient thermal finite element equation for the quadrilateral

element, equation (4.16), can be evaluating in closed form. The evaluation of

the matrices, equations (4.17 4.19), was greatly simplified by using

Mathematica [21], a general purpose computer software system for performing

algebraic manipulation. The closed form expressions for the coefficients in the

two-dimensional transient thermal finite element matrices and the evaluation of

IJI are given in Appendix B.

The nodal heat flux vectors, {E n} and {Fn}, contained in the transient

thermal finite element equation, equation (4.16), are related to temperature

gradients through Fourier's law and are given by

{En} =

/-k_x T {Tn})node 1

_-" o_x {Tn})node 2

k
c3x {Tn}_lnode 3

=,_{N}T {T n} )q_lnodet.TM ax 4

(4.26)
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{Fn}=

(._{N}T {Tn})k _y node 1

(-k_-T {Tn}) node 2

k
o_y {Tn})=node 3

('k'_ {Tn})node 4

(4.27)

where the gradients of the interpolation functions with respect to the Cartesian

coordinates are replaced by the expressions in natural coordinates given in

equations (4.24 - 4.25). These vectors are a function of nodal temperatures and

hence need to be updated at every time step for the transient thermal analysis.

For problems involving temperature dependent conductivity, the thermal

conductivity is also easily updated. The boundary surface nodal heat flux vector

{q} in equation (4.16) represents the heat flux normal to the element boundary

and can be replaced by any of the several different types of boundary heating

conditions given in equation (2.17). The transient thermal finite element

equation, equation (4.16), is solved for the nodal change in the variable, {AU}, at

every time step. The temperatures at the new time step, n+l, are then

determined using equation (4.13).

4.2.2 Structural Analysis

The two-dimensional quasi-static structural response is governed by the

equilibriutn equations. By neglecting the body forces, these equations are,

O Oxo xy 0 (4.28)
ay =
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_ 0 (4.29)
ay + o_x =

where ax and Gy represent normal stresses in the x- and y-coordinate directions

respectively, and _xy represents shear stress. As with the thermal formulation,

the Galerkin method of weighted residuals, equation (4.9), is applied to each

equilibrium equation to yield

Aj- _x o_xyNi(--_-+ _ )dA= 0 (4.30)

Ni( o_y + _)x )dA = 0 (4.31)

where Ni, i = 1 to 8 are the nodeless variable interpolation functions given in

equations (2.10) and (4.7). Integration by parts is performed on each term in

equations (4.30 and 4.31) to generate the element boundary integrals yielding

the equations

_. r
(ax o_x +_xy o_y) dA = jNi Tx d S

(4.32)

o_Ni _Ni_ J((_y _- +txy o-)x/ dA = 'Ni Ty dS (4.33)

where Tx and Ty are surface tractions on the element boundaries in the x- and

y-coordinate directions, respectively. Equations (4.32 - 4.33) are combined to

yield sixteen equations for evaluation of the sixteen degrees of freedom of the
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displacement components for the two-dimensional nodeless variable structural
f.

element. The combined representation is written in the form

A_[Bs]T {o) dA = J [N] T {Ts} dS (4.34)

where the subscript s denotes the structural form of the matrices. The matrix

[N] T is the transpose of the combined interpolation function matrix defined in

equation (4.5). The matrix, [Bs]T, is given by

[Bs] T =

aN1 0 aN1-
_x ¢3y

o aN1 _N_
o_y o_X

_N8 0 _N8
_x _y

o _N8 _N8
o_y o_x -

(4.35)

and the vectors {0.} and {Ts} contain the stress components and surface

tractions, respectively. These matrices are defined by

f°xt(0} - 0.y = {0"1}" {0.2}

Zxy

(4.36)

{Tx}
{Ts} = Ty

(4.37)
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where {ol} and {02} are the two-dimensional components of the stress vector

associated with the displacement gradients and the temperature, respectively.

The first component vector is related to the displacement gradient through the

generalized Hooke's law in the form

{ol} = [C]{E}

where

(e} =

o3U

_x

_v
(4.38)

[C] is the matrix of material elastic constants and {e} is the vector of strain

components. The second stress component vector is related to the temperature

given by

{o2) = [C] {e¢}(T(x,y) - To) (4.39)

where {a} is the vector of thermal expansion parameters, T(x,y) is the element

temperature distribution, and To is the reference temperature for a zero stress

state. The matrix [C] and vector {e_} are dependent on whether the problem

being analyzed assumes a state of plane stress or plane strain. For the plane

stress problem and an isotropic material, [C] and {or}are defined by
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(c]= E v 1 0 lo_

oo! 
(4.40)

and for the plane strain problem [C] and {a} are defined by

E ojE v 1-v 0 and {e¢}= a(v) (4.41)
[c] = (1+v)(1-2v) 1-2v

0 0

where E is the modulus of elasticity, v is Poisson's ratio, and a is the coefficient

of thermal expansion. Substituting equation (4.36) into equation (4.34) yields

Aj"[Bs] T {_1} dA + ,J" [Bs] T {a2} dA = J [Ns] T {Ts} dS (4.42)

The finite element approximations are needed to discretize equation

(4.42) in space. For the structural formulation, the flux-based assumptions

discretize the element stresses in the same form as the displacement

discretization given in equations (4.2 - 4.3). It follows from the one-dimensional

formulation that the first stress component, {al}, reduces to the bilinear

approximation. The second stress component, {(_2}, is directly related to

temperature which is quadratic. Hence, the flux-based assumptions are defined

by

{oi)= [N1]{ oi ) (4.43)
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where

{N}T {o}T {o}T ]
[NI]- {o)T {N}T {_}T|

I

{o}T {o}T {N}TJ

and

({ Olx }i-1,4)

({oIy}+=1,4)

.({ Olxy}i-1,4)
t

{02} = [N2] { _2 ) (4.44)

where

{N}T {0}T ]
[N_I= {0}T {N}T

{0}T {0}T

and

{02} =

({ O2x}i=1,8)"L< ({_ }_=l,e)r
/

{o} -'

The vectors { 0 } and {0) are null vectors. The transpose of the vectors is given

by
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{o}T=[o000]

(0} T =[ 0 0 0 0 0 0 0 O] (4.45)

For { Ol }, i = 1 to 4 yields the values of the first stress components evaluated at

node i. For { G2 }, i = 1 to 8 yields the values of the second stress components

with respect to nodes i - 1 to 4 and the nodeless variables, i - 5 to 8. The terms

in { Ol } are related to displacement gradients using equation (4.38) and the

finite element approximation of the displacements, equations (4.2 - 4.3). The

terms in { o2 } are related to the temperatures using equation (4.39) and the

finite element approximation of the temperature distribution, equation (4.1).

The two-dimensional hierarchical flux-based finite element equation is

written in the form

u

[D1] ( 01 ) = [D2] ( 02 }- [B] (Ts} (4.46)

where the matrices [D1], [D2], and [B] are defined by

[D1] = AJ"[Bs] T [N1] dA
(4.47)

[D2] = AJ' [Bs] T [N2] dA
(4.48)

[B] = j [N] T dS
(4.49)

The surface traction vector, {Ts}, is assumed here to be constant over the

element surface. Transformation to natural coordinates is required for
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evaluation of these matrices. As with the thermal matrices, terms in the matrix

[Bs] T defined in equation (4.35) are replaced by the corresponding gradients in

natural coordinates given in equations (4.24 - 4.25). Also, using the

relationship dA = IJId_d_l allows for evaluation of the finite element matrices for

the two-dimensional hierarchical flux-based finite element equation. To

evaluate the finite element equation in terms of the unknown displacements, the

vector { al } is expressed in terms of the displacement vector which can be

defined as

{ Ol } = [P] (5} (4.50)

The closed-form expressions for the terms in the two-dimensional structural

finite element matrices, [D1], [D2], [B], and [P] and the vector { a2 } are given in

Appendix B. Replacing { al } in equation (4.46) by the relationship given in

equation (4.50), the finite element equation is evaluated in terms of {_}, the

vector of unknown nodal displacements and nodeless variables. The values of

{8} are then used to evaluate the element stresses using equation (4.36) and

equations (4.38 and 4.39).

4.3 Applications of Two-Dimensional Methodologies

To evaluate the two-dimensional nodeless variable flux-based method,

two example problems are presented. Both example problems are for a plane

stress analysis of a copper plate. The first problem is a plate with a linear

temperature distribution. An exact solution for the displacement distributions is

available for this problem, providing a means for verifying the accuracy of the

nodeless variable flux-based solution. The second problem analyzed is for a
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plate with a linear distribution of an applied heat flux over one of the plate

boundaries. Solutions for both of the example problems are compared with

solutions obtained using the conventional finite element method.

A schematic of the structural finite element model for the first problem

analyzed is shown in figure 12(a). The copper plate is 10 in. long in the x-

direction and 5 in. wide in the y-direction. A reference temperature for zero

thermal stress, To = 0, was assumed. The plate is free to expand and is

constrained to prevent rigid body motion. The temperature distribution within

the plate was assumed to be a linear function of x, where T(x) - 10x, as shown

in figure 12(b). Because the plate is subjected to a linear temperature

distribution and is free to expand, there is no thermal stress. The exact

displacement distributions are given by

u(x,y) = 5 o_(x2- y2)

v(x,y) = 10 _ xy

(4.51)

(4.52)

where _ is the coefficient of thermal expansion for copper. The exact u-

displacement distributions at y = 0 and at y = 5 in. are plotted in figures 13(a)

and 13(b), respectively. Also shown in figure 13(a) and 13(b) are the

displacement distributions obtained from the nodeless variable flux-based and

conventional methods. As can be seen from figure 13(a) and 13(b), one

nodeless variable flux-based element yields the exact displacement

distributions, whereas one conventional element was insufficient to accurately

describe the u-displacement distributions. As shown in figure 13(a) and 13(b),

four conventional elements were required to closely represent the exact

solution.
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Figure 12. Schematic diagram of structural finite element model and
assumed temperature distribution.
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Figure 13. Displacement distributions in a copper plate

subjected to a linear temperature distribution.
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The second problem analyzed consisted of thermal and structural analyses of a

4 in. square copper plate. The schematic diagram of the thermal and structural

finite element models are shown in figures 14(a) and 14(b), respectively. For

the thermal analysis, an initial temperature of Ti = 70 °F is assumed, where the

boundary conditions consist of: (1) an applied linearly distributed heating rate,

q, at x = 4 in., as shown in figure 14(a); (2) a prescribed temperature of 70 ° F at

y = 4 in.; (3) insulated at y = 0; and (4) insulated at x = 0. The temperature

distributions along the boundaries y = 0 and x = 4 in., obtained using the

nodeless variable flux-based and conventional methods are shown in figure

15(a) and 15(b) for the time t = 5 sec. The solution for the 16 x 16 mesh of

conventional elements is considered to be the reference solution. A 4 x 4 mesh

of nodeless variable flux-based elements is required to obtain an accurate

representation of the reference solution. The temperature distributions at t = 5

sec., obtained using the 16 x 16 mesh of conventional elements and 4 x 4 mesh

of nodeless variable elements, are used as the thermal loading in the structural

analysis. The thermal finite element model discretizations used to obtain the

temperature distributions were also used as the structural finite element model

discretizations. A reference temperature for zero thermal stress, To = 70 OF is

assumed. As shown in figure 14(b), the structural model is constrained from

displacement in the y-coordinate direction along the boundary y = 0, and

constrained from displacement in the x-coordinate direction at the comer x = y =

0. The displacement distributions were obtained using the nodeless variable

flux-based method, with the 4 x 4 finite element model discretization required to

accurately represent the reference temperature distribution. The displacement

distributions were also obtained by using the conventional method, with the 16

x 16 finite element model discretization. The maximum displacements and
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Figure 14. Schematic diagram of thermal and structural finite

element model of a copper plate.
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Figure 15. Temperature distributions in a copper plate at t = 5 sec.
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displacement gradients were observed along the boundary at x = 4 in. for the v

displacement. The v displacements along the boundary at x = 4 in. obtained

using the nodeless variable flux-based and conventional method are shown in

figure 16(a). The maximum stress occurred along the boundary at y = 0 and

normal to the y-coordinate. The average nodal stress distributions along the

boundary where y = 0 obtained using the flux-based and conventional method

are sliow in figure 16(b). Although only 4 x 4 nodeless variable elements were

required to represent accurately the reference temperature and displacement

distributions, a mesh of 8 x 8 nodeless variable elements is required to

represent accurately the stress distribution.
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at t = 5 sec.

7O



Chapter 5

CONCLUDING REMARKS

A hierarchical finite element method using a flux-based formulation

technique is developed for both one-dimensional and two-dimensional thermal-

structural analyses. The derivation of the finite element equations is presented

along with the resulting finite element matrices. The finite element matrices

associated with the flux-based method can be evaluated in closed-form which

distinguishes the flux-based method from the conventional finite element

formulation which requires numerical integration for evaluation of the finite

element matrices. The hierarchical element is established by introducing

additional degrees of freedom into the assumed distribution of the unknown

variables by the use of nodeless variables. Employing hierarchical finite

elements provides improved solution accuracy without reconstructing new finite

element models. The technique also allows a single finite element model to be

used for both the thermal and structural analyses, thus eliminating the difficulty

in transferring data between the analyses.

Several thermal and structural example problems are analyzed to

investigate the ability of the hierarchical flux-based method for predicting

accurate thermal and structural responses. The resulting solutions obtained by

using the hierarchical flux-based method are compared with solutions obtained

using the conventional finite element method and the exact solution when

available. From the resulting transient thermal solutions, the hierarchical flux-

based method demonstrates an ability to provide more accurate temperature

distribution results using fewer elements than the conventional finite element
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method, especially when large temperature gradients are present in the

structure. With the quasi-static assumption, the temperature distribution results

at a specified time can be used as thermal loading in a structural analysis. To

implement a temperature solution, the corresponding structural model needs to

have the same discretization as the thermal model. Hence, the conventional

method usually requires a structural model with more elements then the

hierarchical flux-based method requires to provide an accurate temperature

distribution. The hierarchical flux-based finite element method also produced

accurate structural displacements and stresses using fewer elements than

required by the conventional method. In general, the hierarchical flux-based

elements show some improvements in accuracy for predicting thermal and

structural responses as compared to using an equivalent number of

conventional elements.

The hierarchical flux-based method is presently devoloped for the

analysis of one- and two-dimensional membrane structures. The method is

general and could be extended to three-dimensional thermal and structural

analysis capabilities and developed for plate bending problems.
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Appendix A

Closed-Form Matrices for One-Dimensional

Nodeless Variable Flux-Based Finite Element

The closed-form expressions for the

nodeless variable flux-based finite element

formulation, [M] and [D] are given by

terms in

matrices

the one-dimensional

used in the thermal

M(1,1) = M(2,2) = L/3

M(1,2) = M(2,1) = L/6

M(1,3) = M(2,3) = M (3,1) = M (3,2) = L/12

M(3,3) = L/30 (A.1)

D(1,1) = D(1,2)=-1/2

D(2,1) = D(2,2)= 1/2

D(3,1) = 1/6

D(3,2) = -1/6 (A.2)

For the structural formulation, the matrix [D2] and the matrix [P] are given by

D2(1,1) = D2(1,2) = -1/2

D2(2,1) = D2(2,2) = 1/2

D2(3,1) = 1/6

D2(1,3) = -1/6

D2(2,3) = 1/6

D2(3,2) = -1/6

D2(1,3) = -1/6

D2(2,3) = 1/6

D2(3,3) = 0 (A.3)
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P(1,1) = P(2,2) = E/I_

P(1,2) = P(2,1 ) = -E/L

P(1,3) = P(2,3) = P(3,1) =P(3,2) = 0

P(3,3) = FJ3L (A.4)
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Appendix B

Closed-Form Matrices for Two-Dimensional

Nodeless Variable Flux-Based Finite Element

The determinant of the Jacobian matrix, IJI, is required for evaluation of

the two-dimensional finite element matrices. It can be expressed in a simplified

form as

4

IJI: vi
i=1

(B.1)

where Ni, i = 1 to 4 are the linear element interpolation functions. The terms vi

are defined by

Vl = ((x2-xl)(y4-Yl)-(x4-xl)(y2-Yl))/4

v2 = ((x2-xl)(y3-Y2)-(x3-x2)(y2-Y1))/4

v3 = ((x3-x2)(y4-Y3)-(x4-x3)(y3-Y2))/4

v4 = ((x4-xl)(y4-Y3)-(x4-x3)(y4-Yl))/4 (B.2)

where xi and Yi, i = 1 to 4 are the x- and y-coordinates of node i. The

coefficients in the thermal finite element mass matrix are evaluated using the

expression

1 1 4

M(i,j)= I J'NiNj(_-".NkVk)d_ dtI (B.3)
- - 1 k=l

where each coefficient is evaluated as

M(1,1) = (9vl + 3v2 + v3 + 3v4)/36
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M(1,2) = (3v1 + 3v2 + v3 + v4)/36

M(1,3) = (vl + v2 + v3 + v4)/36

M(1,4) = (3Vl + v2 + v3 + 3v4)/36

M(1,5) = (9Vl + 6v2 + 2v3 + 3v4)/180

M(1,6) = (3Vl + 3v2 + 2v3 + 2v4)/180

M(1,7) = (3vl + 2v2 + 2v3 + 3v4)/180

M(1,8) = (9Vl + 3v 2 + 2v3 + 6v4)/180

M(2,1) = (3Vl + 3v2 + v3 + v4)/36

M(2,2) = (3Vl + 9v2 + 3v3 + v4)/36

M(2,3) = (Vl + 3v2 + 3v3 + v4)/36

M(2,4) = (v1 + v2 + v3 + v4)/36

M(2,5) = (6Vl + 9v2 + 3v3 + 2v4)/180

M(2,6) = (3vl + 9v2 + 6v3 + 2v4)/180

M(2,7) = (2vl + 3v2 + 3v3 + 2v4)/180

M(2,8) = (3Vl + 3v2 + 2v3 + 2v4)/180

M(3,1) = (v1 + v2 + v3 + v4)/36

M(3,2) = (Vl + 3v2 + 3v3 + v4)/36

M(3,3) = (Vl + 3v2 + 9v3 + 3v4)/36

M(3,4) = (Vl + v2 + 3v3 + 3v4)/36

M(3,5) = (2Vl + 3v2 + 3v3 + 2v4)/180

M(3,6) = (2Vl + 6v2 + 9v3 + 3v4)/180

M(3,7) = (2Vl + 3v2 + 9v3 + 6v4)/180

M(3,8) = (2Vl + 2v2 + 3v3 + 3v4)/180

M(4,1) = (3vl + v2 + v3 + 3v4)/36

M(4,2) = (Vl + v2 + v3 + v4)/36

M(4,3) = (Vl + v2 + 3v3 + 3v4)/36

M(4,4) = (3Vl + v2 + 3v3 + 9v4)/36

M(4,5) = (3Vl + 2v2 + 2v3 + 3v4)/180

M(4,6) = (2Vl + 2v2 + 3v3 + 3v4)/180

M(4,7) = (3Vl + 2v2 + 6v3 + 9v4)/180

M(4,8) = (6Vl + 2v2 + 3v3 + 9v4)/180

M(5,1) = (9Vl + 6v2 + 2v3 + 3v4)/180

M(5,2) = (6v1 + 9v2 + 3v 3 + 2v4)/180

M(5,3) = (2Vl + 3v2 + 3v3 + 2v4)/180

M(5,4) = (3vl + 2v2 + 2v3 + 3v4)/180

M(5,5) = (3vl + 3v2 + v3 + v4)/180
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M(5,6)

M(5,7)
M(5,8)=
M(6,1) =

M(6,2) =

M(6,3) =

M(6,4) =

M(6,5) =

M(6,6) =

M(6,7) =

M(6,8) =

M(7,1) =

M(7,2) =

M(7,3) =

M(7,4) =

M(7,5) =

M(7,6) =

M(7,7) =

M(7,8) =

M(8,1) =

M(8,2) =

M(8,3) =

M(8,4) =

M(8,5)=
M(8,6) -

M(8,7) =

M(8,8) =

= (6Vl + 9v2 + 6v3 + 4v4)/900

= (v1 + v2 + v3 + v4)/180

(9vl + 6v2 + 4v3 + 6v4)/900

(3Vl + 3v2 + 2v3 + 2v4)/180

(3Vl + 9v2 + 6v3 + 2v4)/180

(2v1 + 6v2 + 9v3 + 3v4)/180

(2Vl + 2v2 + 3v3 + 3v4)/180

(6vl + 9v2 + 6v3 + 4v4)/900

(Vl + 3v2 + 3v3 + v4)/180

(4vl + 6v2 + 9v3 + 6v4)/900

(V1 + V2 + V3 + V4)/180

(3Vl + 2V2 + 2V3 + 3V4)/180

(2Vl + 3V2 + 3V3 + 2V4)/180

(2Vl + 3V2 + 9V3 + 6V4)/180

(3Vl + 2V2 + 6V3 + 9V4)/180

(Vl + V2 + V3 + V4)/180

(4Vl + 6v2 + 9v3 + 6v4)/900

(Vl + v2 + 3v3 + 3v4)/180

(6vl + 4v2 + 6v3 + 9V4)/900

(9Vl + 3v2 +

(3Vl + 3v2 +

(2Vl + 2v2 +

(6vl + 2v2 +

(9Vl + 6v2 +

(Vl + v2 + v3

(6Vl

(3Vl

2v3 + 6v4)/180

2v3 + 2v4)/180

3v3 + 3v4)/180

3v3 + 9v4)/180

4v3 + 6V4)/900

+ v4)/180

+ 4v2 + 6v3 + 9v4)/900

+ v2 + v3 + 3v4)/180 (B.4)

The coefficients in the thermal finite element matrices, [Dx] and [Dy], are

evaluated using the expressions

1 1

," aNi 2_/{-_-}Tdt_dllDx(i,j)= -I -I /J22-_ -°J1
(B.5)
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Dy(i,j) = -t

1

(j _Ni 1_i {_-}T d_-t L" 21o__ + J1 drl
(B.6)

where each coefficient in Dx(i,j) is evaluated as

(-Yl + 2y3 - y4)/12

(-Yl + y3)/12

Dx(1,1) = (Y2- y4)/6

Dx(1,2) = (2y2- Y3- y4)/12

Dx(1,3) = (Y2- y4)/12

Dx(1,4) = (Y2 + Y3- 2y4)/12

Dx(2,1 ) = (-2yl + Y3 + y4)/12

Dx(2,2) = (-Yl + Y3)/6

Dx(2,3) =

Dx(2,4) =

Dx(3,1 ) - (-Y2 + y4)/12

Dx(3,2) - (Yl - 2y2 + y4)/12

Dx(3,3) = ('Y2 + y4)/6

Dx(3,4) = ('Yl "Y2 + 2y4)/12

Dx(4,1) = (2yl - Y2" y3)/12

Dx(4,2) = (Yl" y3)/12

Dx(4,3) = (Yl + Y2- 2y3)/12

Dx(4,4) = (Yl - y3)/6

Dx(5,1) = (-6yl + 2y2 + Y3 + 3y4)/72

Dx(5,2) = (-2yl + 6y2 - 3y3 - y4)/72

Dx(5,3) = (-Yl + 3y2 - 2y4)/72

Dx(5,4) =

Dx(6,1 ) =

Dx(6,2) =

Dx(6,3) =

Dx(6,4) =

Dx(7,1 ) =

Dx(7,2) =

Dx(7,3) =

Dx(7,4) =

(-3yl + Y2 + 2y3)/72

('3y2 + Y3 + 2y4)/72

(3yl - 6y2 + 2y3 + y4)/72

('Yl - 2y2 + 6y3 - 3y4)/72

(-2yl - Y2 + 3y3)/72

(-2y2 - Y3 + 3y4)/72

(2yl - 3y3 + y4)/72

(Yl + 3Y2- 6y3 + 2y4)/72

(-3yl - Y2- 2Y3 + 6y4)/72

Dx(8,1) = (6Yl - 3y2- Y3" 2y4)/72

Dx(8,2) = (3yl - 2y3- y4)/72
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Dx(8,3) = (Yl + 2y2 - 3y4)/72

Dx(8,4) = (2yl + Y2 + 3y3 - 6y4)/72 (B.7)

and each coefficient in Dy(i,j) is evaluated as

Dy(1,1) = (-x2 + x4)/6

Dy(1,2) = (-2x2 + x3 + x4)/12

Dy(1,3) = (-x2 + x4)/12

Dy(1,4) = (-x2- x3 + 2x4)/12

Dy(2,1) = (2Xl - x3- x4)/12

Dy(2,2) = (xl - x3)/6

Dy(2,3) = (Xl - 2x3 + x4)/12

Dy(2,4) = (Xl - x3)/12

Dy(3,1 ) = (x2- x4)/12

Dy(3,2) = (-X 1 + 2X2 - X4)/12

Dy(3,3) = (x2- x4)/6

Dy(3,4) = (Xl + x2 " 2x4)/12

Dy(4,1)=
Dy(4,2)=
Dy(4,3) =

by(4,4)=
Dy(5,1) =

by(5,2)=
Dy(5,3) =

Dy(5,4) =

Dy(6,1) =

Dy(6,2) =

Dy(6,3) =

Dy(6,4) =

Dy(7,1) =

Dy(7,2) =

Dy(7,3) =

Dy(7,4) =

by(8,1)=
Dy(8,2) =

Dy(8,3) =

(-2Xl + x2 + X3)/12

(-xl + X3)/12

(-Xl - x2 + 2x3)/12

(-xl + x3)/6

(6xl - 2x2 - x3 - 3x4)/72

(2Xl - 6x2 + 3x3 + x4)/72

(Xl - 3x2 + 2x4)/72

(3Xl - x2 - 2x3)/72

(3x2 - x3 - 2x4)/72

(-3xl + 6x2 - 2x3 - x4)/72

(Xl + 2x2- 6x 3 + 3x4)/72

(2Xl + x2 - 3x3)/72

(2x2 + x3 - 3x4)/72

(-2Xl + 3X3 - X4)/72

i-x1 - 3x2 + 6x3 - 2x4)/72

(3Xl + x2 + 2x3 - 6x4)/72

(-6Xl + 3x2 + x3 + 2x4)/72

(-3xl + 2x3 + x4)/72

(-Xl - 2x2 + 3x4)/72
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Dy(8,4) = (-2xl - x2 - 3x3 + 6x4)/72 (B.8)

The boundary matrix, [B], for the thermal formulation is evaluated over the

element surface (i.e.,

interpolation functions.

given by

the element edge) using the one-dimensional

The coefficients in the thermal boundary matrix are

B(1,1) = L/3

B(1,2) = IJ6

B(2,1) = 1_/6

B(2,2) = L/3

B(3,1) = IJ12

B(3,2) = IJ12 (B.9)

where L is the length of the element edge where the applied heating is defined.

For the structural formulation, the coefficients in the finite element matrix,

[D_] are given by

D1(1,1) = (Y2- y4)/6

D1(1,2) = (2y2- Y3" y4)/12

D1(1,3) = (Y2- y4)/12

D1(1,4) = (Y2 + Y3 - 2y4)/12

D1(1,5) :0

D1(1,6) =0

D1(1,7) =0

D1(1,8) = 0

D1(1,9) = (-x2 + x4)/6

D1(1,10) = (-2x2 + x3 + x4)/12

D1(1,11) = (-x2 + x4)/12

D1(1,12) = (-x2- x3 + 2x4)/12

D1(2,1) =0

D1(2,2) = 0

D1(2,3) = 0
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DI(2,4) =0

DI(2,5) = (-x2+ x4)/6

DI (2,6)= (-2x2 + x3 + x4)/12

D1(2,7) = (-x2 + x4)/12

D1(2,8) = (-x2 " x3 + 2x4)/12

D1(2,9) = (Y2" y4)/6

D1(2,10) = (2y2 - Y3" y4)/12

D1(2,11) = (Y2- y4)/12

D1(2,12) = (Y2 + Y3 - 2y4)/12

D1 (3,1) = (-2yl + Y3 + y4)/12

D1(3,2) = (-Yl + y3)/6

D1(3,3)

D1(3,4)

D1(3,5)

D1(3,6)

D1(3,7)

D1(3,8)

D1(3,9)

= (-Yl + 2y3- y4)/12

= (-Yl + y3)/12

=0

D1(3,1

D1(3,1

D1(3,1

D1(4,1

=0

=0

=0

= (2Xl - x3 - x4)/12

0) = (Xl - x3)/6

1) = (xl - 2x3 + x4)/12

2) = (Xl - X3)/12

)=0

D1(4,2) = 0

D1(4,3) = 0

D1(4,4) = 0

D1(4,5) = (2Xl- x3- x4)/12

D1(4,6) = (Xl- x3)/6

D1(4,7) = (Xl - 2x3 + x4)/12

D1(4,8) = (Xl - x3)/12

D1(4,9) = (-2yl + Y3 + y4)/12

D1(4,10) = (-Yl + y3)/6

D1(4,11) = (-Yl + 2y3 - y4)/12

D1(4,12) = (-Yl + y3)/12

D1(5,1) = (-Y2 + y4)/12

D1(5,2) = (Yl - 2y2 + y4)/12

D1 (5,3) = (-Y2 + y4)/6
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D1(5,4) = (-Yl - Y2 + 2y4)/12

D1 (5,5) = 0

O1(5,6) = 0

D1(5,7) = 0

01(5,8)= 0
D1(5,9) = (x2- x4)/12

D1(5,10) = (-Xl + 2x2 - x4)/12

D1(5,11) = (x2- x4)/6

D1(5,12) = (Xl + x2 - 2x4)/12

D1(6,1) =0

D1(6,2) = 0

D1(6,3) = 0

D1 (6,4)=0

D1(6,5) = (x2- x4)/12

D1(6,6) = (-xl + 2x2- x4)/12

D1(6,7) = (x2- x4)/6

D1(6,8) = (xl + x2- 2x4)/12

D1(6,9) = (-Y2 + y4)/12

D1(6,10) = (Yl - 2y2 + y4)/12

D1(6,11) = (-Y2 + Y4)/6

D1(6,12) = (-Yl - Y2 + 2y4)/12

D1(7,1) = (2yl - Y2- y3)/12

D1(7,2) = (Yl- y3)/12

D1(7,3) = (Yl + Y2 - 2y3)/12

D1(7,4) = (Yl - y3)/6

D1(7,5) = 0

D1(7,6) =0

D1 (7,7) = 0

D1(7,8) = 0

D1(7,9) = (-2Xl + x2 + x3)/12

D1(7,10) = (-Xl + x3)/12

D1(7,11) = (-Xl - x2 + 2x3)/12

D1(7,12) = (-Xl + x3)/6

DI(8,1) =0

D1(8,2) = 0

D1(8,3) = 0
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DI(8,4) =0

DI(8,5) = (-2xi + x2 + x3)/12

D1(8,6) = (-Xl + x3)/12

D1(8,7) = (-Xl - x2 + 2x3)/12

D1 (8,8) = (-Xl + x3)/6

D1(8,9) = (2yl - Y2 - y3)/12

D1(8,10) = (Yl - y3)/12

D. (8,11 ) = (Yl + Y2 - 2y3)/12

D. (8,12) = (Yl- y3)/6

D. (9,1) = (-6yl + 2y2 + Y3 + 3y4)/72

D. (9,2) = (-2yl + 6y2- 3y3- y4)/72

D. (9,3) = (-Yl + 3Y2- 2y4)/72

D. (9,4) = (-3yl + Y2 + 2y3)/72

D1(9,5) = 0

O1(9,6) =0

D1(9,7) = 0

D1(9,8) = 0

D1(9,9) = (6Xl - 2x2- x3 - 3x4)/72

D1(9,10) = (2Xl - 6x2 + 3x 3 + x4)/72

D1(9,11) = (Xl - 3x2 + 2x4)/72

D1(9,12) = (3Xl - x2- 2x3)/72

D1(10,1) = 0

D1(10,2) = 0

D1(10,3) = 0

D1(10,4) = 0

D1(10,5) = (6Xl - 2x2 - x3 - 3x4)/72

D1(10,6) = (2Xl - 6x2 + 3x3 + x4)/72

D1(10,7) = (Xl - 3x2 + 2x4)/72

D1(10,8) = (3Xl - x2- 2x3)/72

D1(10,9) = (-6yl + 2y2 + )'3 + 3)'4)/72

D1(10,10) = (-2yl + 6Y2 - 3Y3 - )'4)/72

D1(10,11) = (-Yl + 3y2- 2y4)/72

D1(10,12) = (-3yl + Y2 + 2y3)/72

D1(11,1) = (-3y2 + Y3 + 2y4)/72

D1(11,2) = (3yl - 6Y2 + 2y3 + y4)/72

D1 (11,3) = (-Yl - 2y2 + 6y3 - 3y4)/72
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D1(11,4) = (-2yl - Y2 + 3y3)/72

D1(11,5) = 0

D1(11,6) = 0

D1(11,7) = 0

D1(11,8) = 0

D1(11,9) = (3x2- x3- 2x4)/72

D1(11,10) = (-3Xl + 6x2 - 2x3 - x4)/72

D1(11,11) = (Xl + 2x2 - 6x3 + 3x4)/72

D1(11,12) = (2xl + x2- 3x3)/72

D1(12,1) = 0

D1 (12,2) = 0

D1(12,3) = 0

D1(12,4) = 0

D1(12,5) = (3x2 - x3 - 2x4)/72

D1(12,6) = (-3Xl + 6x2- 2x 3 - x4)/72

D1(12,7) = (Xl + 2x2 - 6x 3 + 3x4)/72

D1(12,8) = (2xl + x2 - 3x3)/72

D1(12,9) = (-3y2 + Y3 + 2y4)/72

D1(12,10) = (3yl - 6y2 + 2y3 + y4)/72

D1(12,11) = ('Yl - 2y2 + 6y3 - 3y4)/72

D1(12,12) = (-2yl - Y2 + 3Y3)/72

D1(13,1) = (-2y2 - Y3 + 3y4)/72

D1 (13,2) = (2yl - 3y3 + y4)/72

D1(13,3) = (Yl + 3y2 - 6y3 + 2y4)/72

D1(13,4) = (-3yl - Y2 - 2y3 + 6y4)/72

D1(13,5) = 0

D1(13,6) = 0

D1(13,7) = 0

D1(13,8) = 0

D1 (13,9) = (2x2 + x3 - 3x4)/72

D1 (13,10) = (-2Xl + 3x3 - x4)/72

D1(13,11) = (-x 1 - 3x2 + 6x 3 - 2x4)/72

D1(13,12) = (3Xl + x2 + 2x3 - 6x4)/72

DI(14,1) = 0

D1 (14,2) = 0

D1(14,3) = 0
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DI(14,4) = 0

DI(14,5) = (2x2 + x3 - 3x4)/72

DI(14,6) = (-2xi + 3x3 -x4)/72

D1(14,7) = (-xl-3x2 + 6x3 -2x4)172

DI(14,8) = (3xi + x2 + 2x3 -6x4)/72

D1(14,9) = (-2y2 - Y3 + 3y4)/72

D1(14,10) = (2yl - 3y3 + y4)/72

D1(14,11) = (Yl + 3y2 - 6y3 + 2y4)/72

D1(14,12) = (-3yl - Y2 - 2y3 + 6y4)/72

D1(15,1) = (6yl - 3y2 - Y3 - 2y4)/72

D1(15,2) - (3yl - 2y3- y4)/72

D1 (15,3) = (Yl + 2y2- 3Y4)/72

D1(15,4) = (2yl + Y2 + 3Y3 - 6y4)/72

D1(15,5) = 0

D1(15,6) = 0

D1(15,7) =0

D1(15,8) = 0

D1 (16,2) =

D1(16,3) =

D1(16,4) =

D1(16,5) =

D1(16,6) =

DI(16,7) =

D1(16,8) =

D1(15,9) = (-6Xl + 3x2 + x3 + 2x4)/72

D.1(15,10) = (-3xl + 2x3 + x4)/72

D1(15,11) = (-Xl - 2x2 + 3x4)/72

D1(15,12) = (-2xl - x2 - 3x3 + 6x4)/72

D1(16,1) = 0

0

0

0

(°6Xl + 3X2 + X3 + 2X4)/72

(-3Xl + 2X3 + X4)/72

(-xl - 2x2 + 3X4)/72

(-2Xl - x2 - 3x3 + 6X4)/72

D1(16,9) = (6yl - 3Y2- Y3" 2y4)/72

D1 (16,10) = (3yl " 2y3 - y4)/72

D1(16,11) = (Yl + 2y2" 3y4)/72

D1(16,12) = (2yl + Y2 + 3y3 - 6y4)/72 (B.10)



and the coefficients in the matrix [D2] are given by

D2(1,1) = (Y2- y4)/6

D2(1,2) = (2y2 - Y3- y4)/12

D2(1,3) = (Y2- y4)/12

D2(1,4) = (Y2 + Y3- 2y4)/12

D2(1,5) = (4y2- Y3- 3y4)/72

D2(1,6) = (3y2 - Y3 - 2y4)/72

D2(1,7) = (2y2 + Y3- 3y4)/72

D2(1,8) = (3y2 + Y3 - 4y4)/72

D2(I ,9)= 0

D2(1,10) = 0

D2(1,11) = 0

D2(I,12) = 0

D2(1,13) = 0

D2(1,14) = 0

D2(1,15) = 0

D2(1,16) = 0

D2(2,1 ) = 0

D2(2,2) = 0

D2(2,3) = 0

D2(2,4) = 0

D2(2,5) = 0

D2(2,6) = 0

D2(2,7) = 0

D2(2,8) = 0

D2(2,9) = (-x2 + x4)/6

D2(2,10) = (-2x2 + x3 + x4)/12

D2(2,11 ) = (-x2 + x4)/12

D2(2,12) = (-x2 - x3 + 2x4)/12

D2(2,13) = (-4x2 + x3 + 3x4)/72

D2(2,14) = (-3x2 + x3 + 2x4)/72

D2(2,15) = (-2x2 - x3 + 3x4)/72

D2(2,16) = (-3x2 - x3 + 4x4)/72

D2(3,1) = (-2yl + Y3 + y4)/12
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D2(3,2) = (-y_ + y3)/6

02(3,3) = + 2y 3 - y4)/12

D2(3,4) = (-Yl + y3)/12

D2(3,5) = (-4yl + 3y3 + y4)/72

02(3,6) = (-3yl + 4y3- y4)/72

D2(3,7) = (-2yl + 3y3- y4)/72

D2(3,8) = (-3yl + 2y3 + y4)/72

D2(3,9)=0

O2(3,10) = 0

O2(3,11) = 0

02(3,12) = 0

02(3,13) = 0

D2(3,14) = 0

D2(3,15) = 0

02(3,16) = 0

02(4,1) = 0

02(4,2) = 0

02(4,3) = 0

02(4,4) =0

02(4,5) = 0

D2(4,6) = 0

02(4,7) = 0

02(4,8) = 0

02(4,9) = (2Xl - x3 - x4)/12

D2(4,10) = (xl - x3)/6

D2(4,11 ) = (xl - 2x3 + x4)/12

D2(4,12) = (Xl - x3)/12

D2(4,13) = (4Xl - 3x3 - x4)/72

D2(4,14) = (3Xl - 4x 3 + x4)/72

D2(4,15) = (2Xl - 3x 3 + x4)/72

D2(4,16) = (3Xl - 2x3 - x4)/72

D2(5,1 ) = (-Y2 + y4)/12

D2(5,2) = (Yl - 2y2 + y4)/12

D2(5,3) = (-Y2 + y4)/6

D2(5,4) = (-Yl - Y2 + 2y4)/12

D2(5,5) = (Yl - 3y2 + 2y4)/72
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D2(5,6) = (Yl - 4y2 + 3y4)/72

D2(5,7) = (-Yl - 3y2 + 4y4)/72

D2(5,8) = (-Yl - 2y2 + 3y4)/72

D2(5,9) = 0

D2(5,10) = 0

D2(5,11 ) - 0

D2(5,12) =0

D2(5,13) -- 0

O2(5,14) = 0

D2(5,15) = 0

D2(5,16) = 0

D2(6,1 ) = 0

D2(6,2) = 0

D2(6,3) = 0

D2(6,4) = 0

D2(6,5) = 0

D2(6,6) = 0

02(6,7) = 0

D2(6,8) = 0

D2(6,9) = (x2- x4)/12

D2(6,10) = (-Xl + 2x2 - x4)/12

D2(6,11 ) = (x2- x4)/6

D2(6,12) = (Xl + x2 - 2x4)/12

D2(6,13) = (-Xl + 3x2 - 2x4)/72

D2(6,14) = (-Xl + 4x2 - 3)(4)/72

D2(6,15) = (Xl + 3x2- 4x4)/72

D2(6,16) = (Xl + 2x2 - 3x4)/72

D2(7,1) = (2yl - Y2- y3)/12

D2(7,2) = (Yl- y3)/12

D2(7,3) = (Yl + Y2 - 2y3)/12

D2(7,4) = (Yl - y3)/6

D2(7,5) = (3yl - Y2" 2y3)/72

D2(7,6) = (2yl + Y2- 3y3)/72

D2(7,7) = (3yl + Y2- 4y3)/72

D2(7,8) = (4yl - Y2 - 3Y3)/72

D2(7,9) = 0
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D2(7,10) = 0

D2(7,11 ) = 0

D2(7,12) = 0

D2(7,13) = 0

D2(7,14) = 0

D2(7,15) = 0

D2(7,16) = 0

D2(8,1) = 0

D2(8,2) = 0

D2(S,3) = 0

D2(8,4)

D2(8,5)

D2(8,6)

D2(8,7)

02(8,8)

D2(8,9)

O2(8,10)

D2(8,11 )

o2(8,12)
D2(8,13)

D2(8,14)

o2(8,15)
D2(8,16)

D2(9,1)

D2(9,2)

D2(9,3)

=0

=0

=0

=0

=0

= (-2Xl + x2 + x3)/12

= (-x 1 + x3)/12

= (-xl - x2 + 2x3)/12

= (-Xl + X3)/6

= ('3Xl + X2 + 2X3)/72

= (-2Xl - X2 + 3X3)/72

= (-3Xl " X2 + 4X3)/72

= (-4Xl + X2 + 3X3)/72

= ('6yl + 2y2 + Y3 + 3y4)/72

= ('2yl + 6y2 - 3y3 " y4)/72

= ('Yl + 3y2 - 2y4)/72

D2(9,4) = (-3yl + Y2 + 2y3)/72

D2(9,5) = (-Yl + y2)/60

D2(9,6) = (-Yl + 3y2 - Y3 - y4)/144

D2(9,7) = (-Yl + Y2 + Y3- y4)/120

D2(9,8) = (-3y 1 + Y2 + Y3 + y4)/144

D2(9,9) = 0

D2(9,10) = 0

D2(9,12) = 0

D2(9,13) = 0

D2(9,14) = 0
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D2(9,15) = 0

D2(9,16) = 0

D2(10,1) = 0

D2(10,2) = 0

D2(10,3) = 0

D2(I0,4) = 0

D2(10,5) = 0

D2(10,6) = 0

D2(10,7) = 0

D2(10,9) = (6Xl - 2x2- x3 - 3x4)/72

D2(10,10) = (2Xl - 6x2 + 3x3 + x4)/72

D2(10,11)

D2(10,12)

D2(10,13)

D2(10,14)

D2(10,15)

D2(10,16)

D2(11,1) =

D2(11,2) =

D2(11,3) =

D2(11,4) =

D2(11,5) =

D2(11,6) =

D2(11,7) =

D2(11,8) =

D2(I 1,9)=

D2(11,10) = 0

D2(11,11) = 0

D2(11,12) = 0

D2(11,13) = 0

D2(11,14) = 0

D2(11,15) = 0

D2(11,16) = 0

D2(12,1) = 0

D2(12,2) = 0

D2(12,3) = 0

= (Xl - 3x2 + 2x4)/72

= (3xl - x2 - 2x3)/72

= (Xl - x2)/60

= (Xl - 3x2 + x3 + x4)/144

= (xl - x2- x3 + x4)/120

= (3Xl - x2- x3 - x4)/144

(-3y2 + Y3 + 2)'4)/72

(3yl - 6y2 + 2Y3 + y4)/72

(-Yl - 2y2 + 6y3 - 3y4)/72

(-2yl - Y2 + 3y3)/72

(Yl - 3y2 + Y3 + y4)/144

('Y2 + y3)/60

(-Yl - Y2 + 3y3 - y4)/144

(-Yl - Y2 + Y3 + y4)/120

0
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D2(12,4) = 0

02(I 2,5) = 0

O2(12,6) = 0

D2(12,7) = 0

D2(12,8) = 0

D2(12,9) = (3x2 - x3 - 2x4)/72

D2(12,10) = (-3Xl + 6x2 - 2x3- x4)/72

O2(12,11) = (Xl + 2x2- 6x3 + 3x4)/72

D2(12,12) = (2xl + x2 - 3x3)/72

02(12,13) = (-Xl + 3x2- x3 - x4)/144

D2(12,14) = (x2- x3)/60

D2(12,15) = (Xl + x2- 3x3 + x4)/144

O2(12,16) = (Xl + x2 - x3 - x4)/120

02(13,1) = (-2y2- Y3 + 3y4)/72

02(13,2) = (2yl - 3Y3 + y4)/72

02(13,3) = (Yl + 3y2 - 6Y3 + 2y4)/72

D2(13,4) = (-3yl - Y2 - 2y3 + 6Y4)/72

D2(13,5) = (Yl - Y2 - Y3 + y4)/120

O2(13,6) = (Yl + Y2 - 3Y3 + y4)/144

02(13,7) = ('Y3 + y4)/60

D2(13,8) = (-Yl - Y2 - Y3 + 3y4)/144

D2(13,9) = 0

02(13,10) = 0

02(13,11) = 0

D2(13,12) = 0

D2(13,13) = 0

D2(13,14) = 0

02(13,15) = 0

D2(13,16) = 0

D2(14,1) = 0

D2(14,2) = 0

02(14,3) = 0

D2(14,4) = 0

D2(14,5) = 0

02(14,6) = 0

O2(14,7) = 0
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D2(14,8) = 0

D2(14,9) = (2x2 + x3 - 3x4)/72

D2(14,10) = (-2xl + 3x3 - x4)/72

D2(14,11) = (-xl - 3x2 + 6x3 - 2x4)/72

D2(14,12) = (3xl + x2 + 2x3 - 6x4)/72

D2(14,13) = (-Xl + x2 + x3 - x4)/120

D2(14,14) = (-xl - x2 + 3x3 - x4)/144

D2(14,15) = (x 3 - x4)/60

D2(14,16) = (Xl + x2 + x3- 3x4)/144

D2(15,1) = (6yl - 3y2- Y3 - 2y4)/72

D2(15,2) = (3yl - 2y3 - y4)/72

D2(15,3) = (Yl + 2y2 - 3y4)/72

D2(15,4) = (2yl + Y2 + 3Y3 - 6y4)/72

D2(15,5) = (3yl - Y2- Y3 - y4)/144

D2(15,6) = (Yl + Y2 - Y3 - y4)/120

D2(15,7) = (Yl + Y2 + Y3- 3Y4)/144

D2(15,8) = (Yl - y4)/60

D2(15,9) = 0

02(15,10) = 0

D2(15,11) = 0

D2(15,12) = 0

D2(15,13) = 0

D2(15,14) = 0

D2(15,15) = 0

D2(15,16) =0

D2(16,1) = 0

D2(16,2) = 0

D2(16,3) = 0

D2(16,4) = 0

D2(16,5) = 0

D2(16,6) = 0

D2(16,7) = 0

D2(16,8) = 0

D2(16,9) = (-6Xl + 3x2 + x3 + 2x4)/72,

D2(16,10) ; (-3Xl + 2x3 + x4)/72 _

D2(16,11) = (-Xl - 2x2 + 3x4)/72
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D2(16,12) = (-2Xl - x2 - 3x3 + 6x4)/72

D2(16,13)= (-3Xl + x2 + x3 + x4)/144

D2(16,14) = (-Xl - x2 + x3 + x4)/120

D2(16,15) = (-Xl - x2 - x3 + 3x4)/144

D2(16,16) = (-Xl + x4)/60 (B.11)

As with the thermal formulation, the boundary matrix [B] used in the structural

formulation is evaluated over the element surface using the one-dimensional

element interpolation functions. The coefficients in the structural boundary

matrix are given by

B(1,1) = L/2

B(1,2) = 0

B(2,1) = 0

B(2,2) = 1_/2

B(3,1) = L/2

8(3,2) = 0

8(4,1) =0

B(4,2) = L/2

9(5,1) = L/6

8(5,2) = 0

9(6,1) =0

B(6,2) = L/6 (B.12)

where L is the length of the element edge where the applied pressure is

defined. The mechanical stress component vector { _1 } is defined in equation

(4.50) as { _1 } = [P]{5}, where the coefficients in the matrix [P] are given by

P( 1, 1) = c11(Y2 - y4)/downl

P(1,2) = C12(-X 2 + x4)/downl

P(1,3) = c11(-Yl + y4)/downl

P( 1, 4) = -c12(-Xl + x4)/downl

P(1,5) = 0
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P(1,6) = 0

P( 1, 7) = -c11(-Yl + y2)/downl

P(1,8) = c12(-Xl + x2)/downl

P( 1, 9) = Cll (-Yl + y4)/downl

P(1,10) = -c12(-Xl + x4)/downl

P( 1,11)=0

P(1,12) = 0

P( 1,13)=0

P( 1,14)=0

P( 1,15)= -c11(-Yl + y2)/downl

P( 1,16) = c12(-Xl + x2)/downl

P( 2, 1) = -Cl 1(-Y2 + y3)/down2

P( 2, 2) = c12(-x 2 + x3)/down2

P( 2, 3) = c11(-Yl + y3)/down2

P( 2, 4) = c12(Xl - x3)/down2

P( 2, 5) = -Cl 1(-Yl + y2)/down2

P( 2, 6) = c12(-Xl + x2)/down2

P(2, 7)=0

P( 2, 8)= 0

P( 2, 9) = -c11(-Y2 + y3)/down2

P(2,10) = c12(-x 2 + x3)/down2

P( 2,11 ) = -c11(-Yl + y2)/down2

P(2,12) = c12(-Xl + x2)/down2

P(2,13)

P(2,14)

P(2,15)

P( 2,

P(3,

P(3,

P(3,
P(3,

P(3,

P(3,

P(3,

P(3,

P(3,

=0

=0

=0

16) =0

1)=0

2) = 0

3) = c11(Y3- y4)/down3

4) = -c12(x 3 - x4)/down3

5) = C11(-Y2 + y4)/down3

6) = c12(x2 - x4)/down3

7) = -Cl 1(-Y2 + y3)/down3

8) = c12(-x2 + x3)/down3

9) =0
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P(3,10) =0

P( 3,1 1) = c11(Y3 - y4)/down3

P(3,12) =-c12(x3 - x4)/down3

P(3,13) = -cl 1(-y2 + y3)/down3

P(3,14) = c12(-x2 + x3)/down3

P(3,15) = 0

P(3,16) =0

P( 4, 1) = c11(Y3 - y4)/down4

P( 4, 2)=-c12(x3 - x4)/down4

P( 4, 3) = 0

P(4,4)= 0
P( 4, 5) = c11(-yl + y4)/down4

P( 4, 6) = -c12(-Xl + x4)/down4

P( 4, 7) = c11(Yl - y3)/down4

P( 4, 8)= c12(-Xl + x3)/down4

P(4,9) =0

P(4,10) = 0

P(4,11) =0

P(4,12)=0
P( 4,13) = Cll (-Yl + y4)/down4

P(4,14) = -c12(-Xl + x4)/down4

P( 4,15) = Cll (Y3- y4)/down4

P( 4,16) = -c12(x3- x4)/down4

P( 5, 1) = c21 (Y2 - y4)/downl

P( 5, 2) = c21(-yl + y4)/downl

P( 5, 4) = -C22(-x 1 + x4)/downl

P( 5, 5)= 0

P(5, 6)=0

P( 5, 7) = -c21(-Yl + y2)/downl

P( 5, 8) = c22(-Xl + x2)/downl

P( 5, 9) = c21(-Yl + y4)/downl

P(5,10) = -c22(-Xl + x4)/downl

P(5,11) = 0

P(5,12) = 0

P(5,13)=0

P(5,14) = 0
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P(5,15) = -c21(-Yl + y2)/downl

P(5,16) = c22(-Xl + x2)/downl

P( 6, 1) = -c21(-Y2 + y3)/down2

P( 6, 2) = c22(-x2 + x3)/down2

P( 6, 3) = c21(-Yl + y3)/down2

P( 6, 4) = c22(Xl - x3)/down2

P( 6, 5) = -c21(-Yl + y2)/down2

P( 6, 6) = c22(-Xl + x2)/down2

P(6, 7)=0

P( 6, 8)= 0

P( 6, 9) = -c21(-Y2 + y3)/down2

P(6,10) = c22(-x2 + x3)/down2

P(6,11) = -c21(-Yl + y2)/down2

P(6,12) = c22(-Xl + x2)/down2

P(6,13) =0

P(6,14) =0

P( 6,15) = 0

P(6,16) = 0

P(7, 1)=0

P(7, 2)=0

P( 7, 4) = -c22(x 3 - x4)/down3

P( 7, 5) = c21(-Y2 + y4)/down3

P( 7, 6) = c22(x2 - x4)/down3

P( 7, 7) = -c21(-Y2 + y3)/down3

P( 7, 8) = C22(-x2 + x3)/down3

P(7, 9)=0

P(7,10) =0

P( 7,11 ) = c21 (Y3 - y4)/down3

P(7,12) = -c22(x 3 - x4)/down3

P(7,13) = -c21(-Y2 + y3)/down3

P( 7,14) = c22(-x2 + x3)/down3

P(7,15) =0

P(7,16) = 0

P( 8, 1) = c21 (Y3 - y4)/down4

P( 8, 2) = -c22(x3 - x4)/down4

P(8,3)=0
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P(8,4)=0

P( 8, 5) = c21(-Yl + y4)/down4

P( 8, 6) = -c22(-Xl + x4)/down4

P( 8, 7) = c21(Yl - y3)/down4

P( 8, 8) = c22(-Xl + x3)/down4

P( 8, 9) = 0

P(8,10) =0

P(8,11) =0

P(8,12) = 0

P(8,13) = c21(-Yl + y4)/down4

P(8,14) = -c22(-xl + x4)/down4

P(8,15) = c21 (Y3- y4)/down4

P( 8,16) = -c22(x 3 - x4)/down4

P( 9, 1) = c33(-x2 + x4)/downl

P( 9, 2) = c33(Y2 - y4)/downl

P( 9, 3) = -c33(-Xl + x4)/downl

P( 9, 4) = c33(-Yl + y4)/downl

P( 9, 5) = 0

P(9,6)=0

P( 9, 7) = c33(-Xl + x2)/downl

P( 9, 8) = -c33(-Yl + y2)/downl

P( 9, 9) = -c33(-Xl + x4)/downl

P(9,10) = c33(-Yl + y4)/downl

P(9,11) =0

P(9,12) = 0

P(9,13) = 0

P(9,14) = 0

P(9,15) = c33(-Xl + x2)/downl

P(9,16) = -c33(-Yl + y2)/downl

P(IO, 1) = c33(-x2 + x3)/down2

P(1 O, 2) = -c33(-Y2 + y3)/down2

P(IO, 3) = c33(Xl - x3)/down2

P(IO, 4) = c33(-Yl + y3)/down2

P(IO, 5) = c33(-Xl + x2)/down2

P(IO, 6) = -c33(-Yl + y2)/down2

P(IO, 7) = 0
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P(IO, 8) = 0

P(IO, 9) = c33(-x2 + x3)Idown2

P(IO, I0) = -c33(-Y2+ y3)Idown2

P(I0,I I) = c33(-xi + x2)Idown2

P(10,12) = -c33(-Yl+ y2)Idown2

P(10,13) = 0

P(I0,14) =0

P(10,15) =0

P(10,16) =0

P(11, 1)=0

P(11, 2)=0

P(1 1, 3) = -c33(x3 - x4)/down3

P(1 1 4) = c33(Y3 - y4)/down3

P(1 1 5) = c33(x2 - x4)/down3

P(1 1 6) = c33(-Y2 + y4)/down3

P(1 1 7) = c33(-x2 + x3)/down3

P(1 1 8) = -c33(-Y2 + y3)/down3

P(11 9)=0

P(11,10) =0

P(11,11 ) = -c33(x 3 - x4)/down3

P(11,12) = c33(Y3 - y4)/down3

P(11,13) = c33(-x 2 + x3)/down3

P(1 1,1 4) = -c33(-Y2 + y3)/down3

P(11,15) =0

P(11,16) =0

P(12, 1) = -c33(x3 - x4)/down4

P(12, 2) = c33(Y3 - y4)/down4

P(12, 3) = 0

P(12, 4) = 0

P(12, 5) = -c33(-Xl + x4)/down4

P(12, 6) = c33(-Yl + y4)/down4

P(12, 7) = c33(-Xl + x3)/down4

P(12, 8) = c33(Yl - y3)/down4

P(12, 9) =0

P(12,10) =0

P(12,11) =0
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P(12,12) =0

P(12,13) = -c33(-Xl + x4)/down4

P(12,14) = c33(-Yl + y4)/down4

P(12,15) = -c33(x3 - x4)/down4

P(12,16) = c33(Y3 - y4)/down4 (B.13)

where down1, down2, down3, and down4 are defined by

down1 = (x2-xl)y4+(Xl-X4)y2+(x4-x2)Yl

down2 = (x2-xl)Y3+(Xl-X3)Y2+(x3-x2)Yl

down3 = (x3-x2)Y4+(x2-x4)Y3+(x4-x3)Y2

down4 = (x3-xl)Y4+(Xl-X4)Y3+(x4-x3)Yl (B.14)

and cij, where i = 1 to 3 and j = 1 to 3, are the coefficients in the material elastic

constant matrix defined in equation (4.40) for plane stress problems and

equation (4.41) for plane strain problems. The coefficients in the thermal stress

component vector {02} are given by

02 (1) = Or,(Cll + C12)(T1 - To)

02 (2) = a (cll * c12)(T2- To)

02 (3) = a (Cll + c12)(T3 - To)

02 (4) = or.(Cll + c12)(T4 - To)

02 (5) = Or.(Cll + C12)(T5)

02 (6) = a (cll + c12)(T6)

02 (7)= a (Cll + c12)(T7 )

02 (8) = a (Cll * C12)(T8 )

02 (9) = or.(c21 + C22)(T1 - To)

02 (10) = a (c21 + c22)(T2 - To)

02 (11) = a (c21 + c22)(T3 - To)
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(52 (12) = Or.(C21 + C22)(T4 " To)

0.2 (13) = (z (c21 + c22)(T5)

0'2 (14) = or.(C21 + C22)(T6)

0"2 (15) = (x (c21 + C22)(T7 )

G2 (16) = o_(c21 + C22)(T8 ) (B.15)

where cij, i = 1 to 3 and j = 1 to 3, are the coefficients in the material elastic

constant matrix defined in equation (4.40) for plane stress problems and

equation (4.41) for plane strain problems. For plane stress problems, (x = o_

and for plane strain problems o_= o_(l+v).
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